Loading…

Extending set functors to generalised metric spaces

For a commutative quantale $\mathcal{V}$, the category $\mathcal{V}-cat$ can be perceived as a category of generalised metric spaces and non-expanding maps. We show that any type constructor $T$ (formalised as an endofunctor on sets) can be extended in a canonical way to a type constructor $T_{\math...

Full description

Saved in:
Bibliographic Details
Published in:Logical methods in computer science 2019-01, Vol.15, Issue 1
Main Authors: Adriana Balan, Alexander Kurz, Jiří Velebil
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For a commutative quantale $\mathcal{V}$, the category $\mathcal{V}-cat$ can be perceived as a category of generalised metric spaces and non-expanding maps. We show that any type constructor $T$ (formalised as an endofunctor on sets) can be extended in a canonical way to a type constructor $T_{\mathcal{V}}$ on $\mathcal{V}-cat$. The proof yields methods of explicitly calculating the extension in concrete examples, which cover well-known notions such as the Pompeiu-Hausdorff metric as well as new ones. Conceptually, this allows us to to solve the same recursive domain equation $X\cong TX$ in different categories (such as sets and metric spaces) and we study how their solutions (that is, the final coalgebras) are related via change of base. Mathematically, the heart of the matter is to show that, for any commutative quantale $\mathcal{V}$, the `discrete' functor $D:\mathsf{Set}\to \mathcal{V}-cat$ from sets to categories enriched over $\mathcal{V}$ is $\mathcal{V}-cat$-dense and has a density presentation that allows us to compute left-Kan extensions along $D$.
ISSN:1860-5974
DOI:10.23638/LMCS-15(1:5)2019