Loading…

Hydrological Layered Dialysis Research on Supply Chain Financial Risk Prediction under Big Data Scenario

In recent years, internet development provides new channels and opportunities for small- and middle-sized enterprises’ (SMEs) financing. Supply chain finance is a hot topic in theoretical and practical circles. Financial institutions transform materialized capital flows into online data under big da...

Full description

Saved in:
Bibliographic Details
Published in:Discrete dynamics in nature and society 2018-01, Vol.2018 (2018), p.1-9
Main Authors: Liu, Jia, Zhu, Xiaoxia, Li, Shi-Yong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, internet development provides new channels and opportunities for small- and middle-sized enterprises’ (SMEs) financing. Supply chain finance is a hot topic in theoretical and practical circles. Financial institutions transform materialized capital flows into online data under big data scenario, which provides networked, precise, and computerized financial services for SMEs in the supply chain. By drawing on the risk management theory in economics and the distributed hydrological model in hydrology, this paper presents a supply chain financial risk prediction method under big data. First, we build a “hydrological database” used for the risk analysis of supply chain financing under big data. Second, we construct the risk identification models of “water circle model,” “surface runoff model,” and “underground runoff model” and carry on the risk prediction from the overall level (water circle). Finally, we launch the supply chain financial risk analysis from breadth level (surface runoff) and depth level (underground runoff); moreover, we integrate the analysis results and make financial decisions. The results can enrich the research on risk management of supply chain finance and provide feasible and effective risk prediction methods and suggestions for financial institutions.
ISSN:1026-0226
1607-887X
DOI:10.1155/2018/3259858