Loading…
Altered Pallidocortical Low-Beta Oscillations During Self-Initiated Movements in Parkinson Disease
Parkinson disease (PD) patients have difficulty with self-initiated (SI) movements, presumably related to basal ganglia thalamocortical (BGTC) circuit dysfunction, while showing less impairment with externally cued (EC) movements. We investigate the role of BGTC in movement initiation and the neural...
Saved in:
Published in: | Frontiers in systems neuroscience 2020-07, Vol.14, p.54-54 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Parkinson disease (PD) patients have difficulty with self-initiated (SI) movements, presumably related to basal ganglia thalamocortical (BGTC) circuit dysfunction, while showing less impairment with externally cued (EC) movements.
We investigate the role of BGTC in movement initiation and the neural underpinning of impaired SI compared to EC movements in PD using multifocal intracranial recordings and correlating signals with symptom severity.
We compared time-resolved neural activities within and between globus pallidus internus (GPi) and motor cortex during between SI and EC movements recorded invasively in 13 PD patients undergoing deep brain stimulation implantation. We compared cortical (but not subcortical) dynamics with those recorded in 10 essential tremor (ET) patients, who do not have impairments in movement initiation.
SI movements in PD are associated with greater low-beta (13-20 Hz) power suppression during pre-movement period in GPi and motor cortex compared to EC movements in PD and compared to SI movements in ET (motor cortex only). SI movements in PD are uniquely associated with significant low-beta pallidocortical coherence suppression during movement execution that correlates with bradykinesia severity. In ET, motor cortex neural dynamics during EC movements do not significantly differ from that observed in PD and do not significantly differ between SI and EC movements.
These findings implicate low beta BGTC oscillations in impaired SI movements in PD. These results provide a physiological basis for the strategy of using EC movements in PD, circumventing diseased neural circuits associated with SI movements and instead engaging circuits that function similarly to those without PD. |
---|---|
ISSN: | 1662-5137 1662-5137 |
DOI: | 10.3389/fnsys.2020.00054 |