Loading…
Model-Independent Lens Distortion Correction Based on Sub-Pixel Phase Encoding
Lens distortion can introduce deviations in visual measurement and positioning. The distortion can be minimized by optimizing the lens and selecting high-quality optical glass, but it cannot be completely eliminated. Most existing correction methods are based on accurate distortion models and stable...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2021-11, Vol.21 (22), p.7465 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lens distortion can introduce deviations in visual measurement and positioning. The distortion can be minimized by optimizing the lens and selecting high-quality optical glass, but it cannot be completely eliminated. Most existing correction methods are based on accurate distortion models and stable image characteristics. However, the distortion is usually a mixture of the radial distortion and the tangential distortion of the lens group, which makes it difficult for the mathematical model to accurately fit the non-uniform distortion. This paper proposes a new model-independent lens complex distortion correction method. Taking the horizontal and vertical stripe pattern as the calibration target, the sub-pixel value distribution visualizes the image distortion, and the correction parameters are directly obtained from the pixel distribution. A quantitative evaluation method suitable for model-independent methods is proposed. The method only calculates the error based on the characteristic points of the corrected picture itself. Experiments show that this method can accurately correct distortion with only 8 pictures, with an error of 0.39 pixels, which provides a simple method for complex lens distortion correction. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s21227465 |