Loading…

Application of the Complex Variable Function Method to SH-Wave Scattering Around a Circular Nanoinclusion

This paper focuses on analyzing SH-wave scattering around a circular nanoinclusion using the complex variable function method. The surface elasticity theory is employed in the analysis to account for the interface effect at the nanoscale. Considering the interface effect, the boundary condition is g...

Full description

Saved in:
Bibliographic Details
Published in:Advances in mathematical physics 2019-01, Vol.2019 (2019), p.1-8
Main Author: Wu, Hongmei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper focuses on analyzing SH-wave scattering around a circular nanoinclusion using the complex variable function method. The surface elasticity theory is employed in the analysis to account for the interface effect at the nanoscale. Considering the interface effect, the boundary condition is given, and the infinite algebraic equations are established to solve the unknown coefficients of the scattered and refracted wave solutions. The analytic solutions of the stress field are obtained by using the orthogonality of trigonometric function. Finally, the dynamic stress concentration factor and the radial stress of a circular nanoinclusion are analyzed with some numerical results. The numerical results show that the interface effect weakens the dynamic stress concentration but enhances the radial stress around the nanoinclusion; further, we prove that the analytic solutions are correct.
ISSN:1687-9120
1687-9139
DOI:10.1155/2019/7203408