Loading…

Application of the Complex Variable Function Method to SH-Wave Scattering Around a Circular Nanoinclusion

This paper focuses on analyzing SH-wave scattering around a circular nanoinclusion using the complex variable function method. The surface elasticity theory is employed in the analysis to account for the interface effect at the nanoscale. Considering the interface effect, the boundary condition is g...

Full description

Saved in:
Bibliographic Details
Published in:Advances in mathematical physics 2019-01, Vol.2019 (2019), p.1-8
Main Author: Wu, Hongmei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c493t-b1e7a91a096fa81bba08e052d047465d5ca847edd273610d849269301f396e6d3
cites cdi_FETCH-LOGICAL-c493t-b1e7a91a096fa81bba08e052d047465d5ca847edd273610d849269301f396e6d3
container_end_page 8
container_issue 2019
container_start_page 1
container_title Advances in mathematical physics
container_volume 2019
creator Wu, Hongmei
description This paper focuses on analyzing SH-wave scattering around a circular nanoinclusion using the complex variable function method. The surface elasticity theory is employed in the analysis to account for the interface effect at the nanoscale. Considering the interface effect, the boundary condition is given, and the infinite algebraic equations are established to solve the unknown coefficients of the scattered and refracted wave solutions. The analytic solutions of the stress field are obtained by using the orthogonality of trigonometric function. Finally, the dynamic stress concentration factor and the radial stress of a circular nanoinclusion are analyzed with some numerical results. The numerical results show that the interface effect weakens the dynamic stress concentration but enhances the radial stress around the nanoinclusion; further, we prove that the analytic solutions are correct.
doi_str_mv 10.1155/2019/7203408
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d7e871ca733245b488180442813888fe</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d7e871ca733245b488180442813888fe</doaj_id><sourcerecordid>2200599644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-b1e7a91a096fa81bba08e052d047465d5ca847edd273610d849269301f396e6d3</originalsourceid><addsrcrecordid>eNqF0Utv1DAUBeAIgURVumONLLGEUL8fy9GIPqQCi9KytG7sm45HaRycBNp_37SpyhJvbFnfPbZ0quo9o18YU-qYU-aODadCUvuqOmDamtox4V6_nDl9Wx2N454uSzilnTqo0mYYuhRgSrknuSXTDsk23w4d3pFrKAmaDsnJ3Icn8A2nXY5kyuTyrP4Ff5BcLqMTltTfkE3Jcx8JkG0qYe6gkO_Q59SHbh6X4XfVmxa6EY-e98Pq6uTrz-1ZffHj9Hy7uaiDdGKqG4YGHAPqdAuWNQ1Qi1TxSKWRWkUVwEqDMXIjNKPRSse1E5S1wmnUURxW52tuzLD3Q0m3UO59huSfLnK58VCmFDr00aA1LIARgkvVSGuZpVJyy4S1tsUl6-OaNZT8e8Zx8vs8l375vuecUuWclnJRn1cVSh7Hgu3Lq4z6x278Yzf-uZuFf1r5LvUR_qb_6Q-rxsVgC_80Y45SLh4AbWOVhA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2200599644</pqid></control><display><type>article</type><title>Application of the Complex Variable Function Method to SH-Wave Scattering Around a Circular Nanoinclusion</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Wu, Hongmei</creator><contributor>Chen, Zengtao ; Zengtao Chen</contributor><creatorcontrib>Wu, Hongmei ; Chen, Zengtao ; Zengtao Chen</creatorcontrib><description>This paper focuses on analyzing SH-wave scattering around a circular nanoinclusion using the complex variable function method. The surface elasticity theory is employed in the analysis to account for the interface effect at the nanoscale. Considering the interface effect, the boundary condition is given, and the infinite algebraic equations are established to solve the unknown coefficients of the scattered and refracted wave solutions. The analytic solutions of the stress field are obtained by using the orthogonality of trigonometric function. Finally, the dynamic stress concentration factor and the radial stress of a circular nanoinclusion are analyzed with some numerical results. The numerical results show that the interface effect weakens the dynamic stress concentration but enhances the radial stress around the nanoinclusion; further, we prove that the analytic solutions are correct.</description><identifier>ISSN: 1687-9120</identifier><identifier>EISSN: 1687-9139</identifier><identifier>DOI: 10.1155/2019/7203408</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Applied physics ; Boundary conditions ; Circularity ; Complex variables ; Composite materials ; Diffraction ; Elasticity ; Equilibrium ; Exact solutions ; Nanotechnology ; Orthogonality ; Refracted waves ; Stress concentration ; Stress distribution ; Trigonometric functions ; Wave scattering</subject><ispartof>Advances in mathematical physics, 2019-01, Vol.2019 (2019), p.1-8</ispartof><rights>Copyright © 2019 Hongmei Wu.</rights><rights>Copyright © 2019 Hongmei Wu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-b1e7a91a096fa81bba08e052d047465d5ca847edd273610d849269301f396e6d3</citedby><cites>FETCH-LOGICAL-c493t-b1e7a91a096fa81bba08e052d047465d5ca847edd273610d849269301f396e6d3</cites><orcidid>0000-0002-2110-0700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2200599644/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2200599644?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Chen, Zengtao</contributor><contributor>Zengtao Chen</contributor><creatorcontrib>Wu, Hongmei</creatorcontrib><title>Application of the Complex Variable Function Method to SH-Wave Scattering Around a Circular Nanoinclusion</title><title>Advances in mathematical physics</title><description>This paper focuses on analyzing SH-wave scattering around a circular nanoinclusion using the complex variable function method. The surface elasticity theory is employed in the analysis to account for the interface effect at the nanoscale. Considering the interface effect, the boundary condition is given, and the infinite algebraic equations are established to solve the unknown coefficients of the scattered and refracted wave solutions. The analytic solutions of the stress field are obtained by using the orthogonality of trigonometric function. Finally, the dynamic stress concentration factor and the radial stress of a circular nanoinclusion are analyzed with some numerical results. The numerical results show that the interface effect weakens the dynamic stress concentration but enhances the radial stress around the nanoinclusion; further, we prove that the analytic solutions are correct.</description><subject>Applied physics</subject><subject>Boundary conditions</subject><subject>Circularity</subject><subject>Complex variables</subject><subject>Composite materials</subject><subject>Diffraction</subject><subject>Elasticity</subject><subject>Equilibrium</subject><subject>Exact solutions</subject><subject>Nanotechnology</subject><subject>Orthogonality</subject><subject>Refracted waves</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Trigonometric functions</subject><subject>Wave scattering</subject><issn>1687-9120</issn><issn>1687-9139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqF0Utv1DAUBeAIgURVumONLLGEUL8fy9GIPqQCi9KytG7sm45HaRycBNp_37SpyhJvbFnfPbZ0quo9o18YU-qYU-aODadCUvuqOmDamtox4V6_nDl9Wx2N454uSzilnTqo0mYYuhRgSrknuSXTDsk23w4d3pFrKAmaDsnJ3Icn8A2nXY5kyuTyrP4Ff5BcLqMTltTfkE3Jcx8JkG0qYe6gkO_Q59SHbh6X4XfVmxa6EY-e98Pq6uTrz-1ZffHj9Hy7uaiDdGKqG4YGHAPqdAuWNQ1Qi1TxSKWRWkUVwEqDMXIjNKPRSse1E5S1wmnUURxW52tuzLD3Q0m3UO59huSfLnK58VCmFDr00aA1LIARgkvVSGuZpVJyy4S1tsUl6-OaNZT8e8Zx8vs8l375vuecUuWclnJRn1cVSh7Hgu3Lq4z6x278Yzf-uZuFf1r5LvUR_qb_6Q-rxsVgC_80Y45SLh4AbWOVhA</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Wu, Hongmei</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2110-0700</orcidid></search><sort><creationdate>20190101</creationdate><title>Application of the Complex Variable Function Method to SH-Wave Scattering Around a Circular Nanoinclusion</title><author>Wu, Hongmei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-b1e7a91a096fa81bba08e052d047465d5ca847edd273610d849269301f396e6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied physics</topic><topic>Boundary conditions</topic><topic>Circularity</topic><topic>Complex variables</topic><topic>Composite materials</topic><topic>Diffraction</topic><topic>Elasticity</topic><topic>Equilibrium</topic><topic>Exact solutions</topic><topic>Nanotechnology</topic><topic>Orthogonality</topic><topic>Refracted waves</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Trigonometric functions</topic><topic>Wave scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Hongmei</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Hongmei</au><au>Chen, Zengtao</au><au>Zengtao Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of the Complex Variable Function Method to SH-Wave Scattering Around a Circular Nanoinclusion</atitle><jtitle>Advances in mathematical physics</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1687-9120</issn><eissn>1687-9139</eissn><abstract>This paper focuses on analyzing SH-wave scattering around a circular nanoinclusion using the complex variable function method. The surface elasticity theory is employed in the analysis to account for the interface effect at the nanoscale. Considering the interface effect, the boundary condition is given, and the infinite algebraic equations are established to solve the unknown coefficients of the scattered and refracted wave solutions. The analytic solutions of the stress field are obtained by using the orthogonality of trigonometric function. Finally, the dynamic stress concentration factor and the radial stress of a circular nanoinclusion are analyzed with some numerical results. The numerical results show that the interface effect weakens the dynamic stress concentration but enhances the radial stress around the nanoinclusion; further, we prove that the analytic solutions are correct.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/7203408</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2110-0700</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-9120
ispartof Advances in mathematical physics, 2019-01, Vol.2019 (2019), p.1-8
issn 1687-9120
1687-9139
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d7e871ca733245b488180442813888fe
source Publicly Available Content Database; Wiley Open Access
subjects Applied physics
Boundary conditions
Circularity
Complex variables
Composite materials
Diffraction
Elasticity
Equilibrium
Exact solutions
Nanotechnology
Orthogonality
Refracted waves
Stress concentration
Stress distribution
Trigonometric functions
Wave scattering
title Application of the Complex Variable Function Method to SH-Wave Scattering Around a Circular Nanoinclusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A43%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20the%20Complex%20Variable%20Function%20Method%20to%20SH-Wave%20Scattering%20Around%20a%20Circular%20Nanoinclusion&rft.jtitle=Advances%20in%20mathematical%20physics&rft.au=Wu,%20Hongmei&rft.date=2019-01-01&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1687-9120&rft.eissn=1687-9139&rft_id=info:doi/10.1155/2019/7203408&rft_dat=%3Cproquest_doaj_%3E2200599644%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-b1e7a91a096fa81bba08e052d047465d5ca847edd273610d849269301f396e6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2200599644&rft_id=info:pmid/&rfr_iscdi=true