Loading…
Application of the Complex Variable Function Method to SH-Wave Scattering Around a Circular Nanoinclusion
This paper focuses on analyzing SH-wave scattering around a circular nanoinclusion using the complex variable function method. The surface elasticity theory is employed in the analysis to account for the interface effect at the nanoscale. Considering the interface effect, the boundary condition is g...
Saved in:
Published in: | Advances in mathematical physics 2019-01, Vol.2019 (2019), p.1-8 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c493t-b1e7a91a096fa81bba08e052d047465d5ca847edd273610d849269301f396e6d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c493t-b1e7a91a096fa81bba08e052d047465d5ca847edd273610d849269301f396e6d3 |
container_end_page | 8 |
container_issue | 2019 |
container_start_page | 1 |
container_title | Advances in mathematical physics |
container_volume | 2019 |
creator | Wu, Hongmei |
description | This paper focuses on analyzing SH-wave scattering around a circular nanoinclusion using the complex variable function method. The surface elasticity theory is employed in the analysis to account for the interface effect at the nanoscale. Considering the interface effect, the boundary condition is given, and the infinite algebraic equations are established to solve the unknown coefficients of the scattered and refracted wave solutions. The analytic solutions of the stress field are obtained by using the orthogonality of trigonometric function. Finally, the dynamic stress concentration factor and the radial stress of a circular nanoinclusion are analyzed with some numerical results. The numerical results show that the interface effect weakens the dynamic stress concentration but enhances the radial stress around the nanoinclusion; further, we prove that the analytic solutions are correct. |
doi_str_mv | 10.1155/2019/7203408 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d7e871ca733245b488180442813888fe</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d7e871ca733245b488180442813888fe</doaj_id><sourcerecordid>2200599644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-b1e7a91a096fa81bba08e052d047465d5ca847edd273610d849269301f396e6d3</originalsourceid><addsrcrecordid>eNqF0Utv1DAUBeAIgURVumONLLGEUL8fy9GIPqQCi9KytG7sm45HaRycBNp_37SpyhJvbFnfPbZ0quo9o18YU-qYU-aODadCUvuqOmDamtox4V6_nDl9Wx2N454uSzilnTqo0mYYuhRgSrknuSXTDsk23w4d3pFrKAmaDsnJ3Icn8A2nXY5kyuTyrP4Ff5BcLqMTltTfkE3Jcx8JkG0qYe6gkO_Q59SHbh6X4XfVmxa6EY-e98Pq6uTrz-1ZffHj9Hy7uaiDdGKqG4YGHAPqdAuWNQ1Qi1TxSKWRWkUVwEqDMXIjNKPRSse1E5S1wmnUURxW52tuzLD3Q0m3UO59huSfLnK58VCmFDr00aA1LIARgkvVSGuZpVJyy4S1tsUl6-OaNZT8e8Zx8vs8l375vuecUuWclnJRn1cVSh7Hgu3Lq4z6x278Yzf-uZuFf1r5LvUR_qb_6Q-rxsVgC_80Y45SLh4AbWOVhA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2200599644</pqid></control><display><type>article</type><title>Application of the Complex Variable Function Method to SH-Wave Scattering Around a Circular Nanoinclusion</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Wu, Hongmei</creator><contributor>Chen, Zengtao ; Zengtao Chen</contributor><creatorcontrib>Wu, Hongmei ; Chen, Zengtao ; Zengtao Chen</creatorcontrib><description>This paper focuses on analyzing SH-wave scattering around a circular nanoinclusion using the complex variable function method. The surface elasticity theory is employed in the analysis to account for the interface effect at the nanoscale. Considering the interface effect, the boundary condition is given, and the infinite algebraic equations are established to solve the unknown coefficients of the scattered and refracted wave solutions. The analytic solutions of the stress field are obtained by using the orthogonality of trigonometric function. Finally, the dynamic stress concentration factor and the radial stress of a circular nanoinclusion are analyzed with some numerical results. The numerical results show that the interface effect weakens the dynamic stress concentration but enhances the radial stress around the nanoinclusion; further, we prove that the analytic solutions are correct.</description><identifier>ISSN: 1687-9120</identifier><identifier>EISSN: 1687-9139</identifier><identifier>DOI: 10.1155/2019/7203408</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Applied physics ; Boundary conditions ; Circularity ; Complex variables ; Composite materials ; Diffraction ; Elasticity ; Equilibrium ; Exact solutions ; Nanotechnology ; Orthogonality ; Refracted waves ; Stress concentration ; Stress distribution ; Trigonometric functions ; Wave scattering</subject><ispartof>Advances in mathematical physics, 2019-01, Vol.2019 (2019), p.1-8</ispartof><rights>Copyright © 2019 Hongmei Wu.</rights><rights>Copyright © 2019 Hongmei Wu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-b1e7a91a096fa81bba08e052d047465d5ca847edd273610d849269301f396e6d3</citedby><cites>FETCH-LOGICAL-c493t-b1e7a91a096fa81bba08e052d047465d5ca847edd273610d849269301f396e6d3</cites><orcidid>0000-0002-2110-0700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2200599644/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2200599644?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Chen, Zengtao</contributor><contributor>Zengtao Chen</contributor><creatorcontrib>Wu, Hongmei</creatorcontrib><title>Application of the Complex Variable Function Method to SH-Wave Scattering Around a Circular Nanoinclusion</title><title>Advances in mathematical physics</title><description>This paper focuses on analyzing SH-wave scattering around a circular nanoinclusion using the complex variable function method. The surface elasticity theory is employed in the analysis to account for the interface effect at the nanoscale. Considering the interface effect, the boundary condition is given, and the infinite algebraic equations are established to solve the unknown coefficients of the scattered and refracted wave solutions. The analytic solutions of the stress field are obtained by using the orthogonality of trigonometric function. Finally, the dynamic stress concentration factor and the radial stress of a circular nanoinclusion are analyzed with some numerical results. The numerical results show that the interface effect weakens the dynamic stress concentration but enhances the radial stress around the nanoinclusion; further, we prove that the analytic solutions are correct.</description><subject>Applied physics</subject><subject>Boundary conditions</subject><subject>Circularity</subject><subject>Complex variables</subject><subject>Composite materials</subject><subject>Diffraction</subject><subject>Elasticity</subject><subject>Equilibrium</subject><subject>Exact solutions</subject><subject>Nanotechnology</subject><subject>Orthogonality</subject><subject>Refracted waves</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Trigonometric functions</subject><subject>Wave scattering</subject><issn>1687-9120</issn><issn>1687-9139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqF0Utv1DAUBeAIgURVumONLLGEUL8fy9GIPqQCi9KytG7sm45HaRycBNp_37SpyhJvbFnfPbZ0quo9o18YU-qYU-aODadCUvuqOmDamtox4V6_nDl9Wx2N454uSzilnTqo0mYYuhRgSrknuSXTDsk23w4d3pFrKAmaDsnJ3Icn8A2nXY5kyuTyrP4Ff5BcLqMTltTfkE3Jcx8JkG0qYe6gkO_Q59SHbh6X4XfVmxa6EY-e98Pq6uTrz-1ZffHj9Hy7uaiDdGKqG4YGHAPqdAuWNQ1Qi1TxSKWRWkUVwEqDMXIjNKPRSse1E5S1wmnUURxW52tuzLD3Q0m3UO59huSfLnK58VCmFDr00aA1LIARgkvVSGuZpVJyy4S1tsUl6-OaNZT8e8Zx8vs8l375vuecUuWclnJRn1cVSh7Hgu3Lq4z6x278Yzf-uZuFf1r5LvUR_qb_6Q-rxsVgC_80Y45SLh4AbWOVhA</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Wu, Hongmei</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2110-0700</orcidid></search><sort><creationdate>20190101</creationdate><title>Application of the Complex Variable Function Method to SH-Wave Scattering Around a Circular Nanoinclusion</title><author>Wu, Hongmei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-b1e7a91a096fa81bba08e052d047465d5ca847edd273610d849269301f396e6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied physics</topic><topic>Boundary conditions</topic><topic>Circularity</topic><topic>Complex variables</topic><topic>Composite materials</topic><topic>Diffraction</topic><topic>Elasticity</topic><topic>Equilibrium</topic><topic>Exact solutions</topic><topic>Nanotechnology</topic><topic>Orthogonality</topic><topic>Refracted waves</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Trigonometric functions</topic><topic>Wave scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Hongmei</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Hongmei</au><au>Chen, Zengtao</au><au>Zengtao Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of the Complex Variable Function Method to SH-Wave Scattering Around a Circular Nanoinclusion</atitle><jtitle>Advances in mathematical physics</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1687-9120</issn><eissn>1687-9139</eissn><abstract>This paper focuses on analyzing SH-wave scattering around a circular nanoinclusion using the complex variable function method. The surface elasticity theory is employed in the analysis to account for the interface effect at the nanoscale. Considering the interface effect, the boundary condition is given, and the infinite algebraic equations are established to solve the unknown coefficients of the scattered and refracted wave solutions. The analytic solutions of the stress field are obtained by using the orthogonality of trigonometric function. Finally, the dynamic stress concentration factor and the radial stress of a circular nanoinclusion are analyzed with some numerical results. The numerical results show that the interface effect weakens the dynamic stress concentration but enhances the radial stress around the nanoinclusion; further, we prove that the analytic solutions are correct.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/7203408</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2110-0700</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-9120 |
ispartof | Advances in mathematical physics, 2019-01, Vol.2019 (2019), p.1-8 |
issn | 1687-9120 1687-9139 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d7e871ca733245b488180442813888fe |
source | Publicly Available Content Database; Wiley Open Access |
subjects | Applied physics Boundary conditions Circularity Complex variables Composite materials Diffraction Elasticity Equilibrium Exact solutions Nanotechnology Orthogonality Refracted waves Stress concentration Stress distribution Trigonometric functions Wave scattering |
title | Application of the Complex Variable Function Method to SH-Wave Scattering Around a Circular Nanoinclusion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A43%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20the%20Complex%20Variable%20Function%20Method%20to%20SH-Wave%20Scattering%20Around%20a%20Circular%20Nanoinclusion&rft.jtitle=Advances%20in%20mathematical%20physics&rft.au=Wu,%20Hongmei&rft.date=2019-01-01&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1687-9120&rft.eissn=1687-9139&rft_id=info:doi/10.1155/2019/7203408&rft_dat=%3Cproquest_doaj_%3E2200599644%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-b1e7a91a096fa81bba08e052d047465d5ca847edd273610d849269301f396e6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2200599644&rft_id=info:pmid/&rfr_iscdi=true |