Loading…

Hybrid Information Mixing Module for Stock Movement Prediction

With the continuing active research on deep learning, research on stock price prediction using deep learning has been actively conducted in the financial industry. This paper proposes a method for predicting stock price movement using stock and news data. The stock market is affected by many variabl...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2023-01, Vol.11, p.1-1
Main Authors: Choi, Jooweon, Yoo, Shiyong, Zhou, Xiao, Kim, Youngbin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-92ad1398e53180b590d5061881498ddb312b3b1870a0554d07d8cbe4fb18a9a3
cites cdi_FETCH-LOGICAL-c409t-92ad1398e53180b590d5061881498ddb312b3b1870a0554d07d8cbe4fb18a9a3
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Choi, Jooweon
Yoo, Shiyong
Zhou, Xiao
Kim, Youngbin
description With the continuing active research on deep learning, research on stock price prediction using deep learning has been actively conducted in the financial industry. This paper proposes a method for predicting stock price movement using stock and news data. The stock market is affected by many variables; thus, market volatility should be considered for predicting stock price movement. Because stock markets are efficient, all kinds of information are quickly reflected in stock prices. We create a new fusion mix by combining price and text data features and propose a hybrid information mixing module designed using two map blocks for effective interaction between the two features. We extract the multimodal interaction between the time-series features of the price data and the semantic features of the text data. In this paper, a multilayer perceptron-based model, the hybrid information mixing module, is applied to the stock price movement prediction to conduct a price fluctuation prediction experiment in a stock market with high volatility. In addition, the accuracy, Matthews correlation coefficient (MCC) and F1 score for the stock price movement prediction were used to verify the performance of the hybrid information mixing module.
doi_str_mv 10.1109/ACCESS.2023.3258695
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d88fed7502064066922bc4a7ca5e9edc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10075550</ieee_id><doaj_id>oai_doaj_org_article_d88fed7502064066922bc4a7ca5e9edc</doaj_id><sourcerecordid>2792134821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-92ad1398e53180b590d5061881498ddb312b3b1870a0554d07d8cbe4fb18a9a3</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYMoOOZ-gT4UfO68SZo2eRFGmW6wobC9hzRJR-bWzLQT9-_N7BDzkFw-zjk3HITuMYwxBvE0KcvpajUmQOiYEsZzwa7QgOBcpJTR_PrffItGbbuFeHhErBig59mpCs4k86b2Ya8655tk6b5ds0mW3hx3Nok8WXVef0TwZfe26ZL3YI3TZ-0duqnVrrWjyztE65fpupyli7fXeTlZpDoD0aWCKIOp4JZRzKFiAgyDHHOOM8GNqSgmFa0wL0ABY5mBwnBd2ayOTAlFh2jexxqvtvIQ3F6Fk_TKyV_gw0aq0Dm9s9JwXltTMCCQZ5DngpBKZ6rQillhjY5Zj33WIfjPo207ufXH0MTfS1IIgmnG4zVEtFfp4Ns22PpvKwZ5rl32tctz7fJSe3Q99C5nrf3ngIIxBvQHGEN8mQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792134821</pqid></control><display><type>article</type><title>Hybrid Information Mixing Module for Stock Movement Prediction</title><source>IEEE Xplore Open Access Journals</source><creator>Choi, Jooweon ; Yoo, Shiyong ; Zhou, Xiao ; Kim, Youngbin</creator><creatorcontrib>Choi, Jooweon ; Yoo, Shiyong ; Zhou, Xiao ; Kim, Youngbin</creatorcontrib><description>With the continuing active research on deep learning, research on stock price prediction using deep learning has been actively conducted in the financial industry. This paper proposes a method for predicting stock price movement using stock and news data. The stock market is affected by many variables; thus, market volatility should be considered for predicting stock price movement. Because stock markets are efficient, all kinds of information are quickly reflected in stock prices. We create a new fusion mix by combining price and text data features and propose a hybrid information mixing module designed using two map blocks for effective interaction between the two features. We extract the multimodal interaction between the time-series features of the price data and the semantic features of the text data. In this paper, a multilayer perceptron-based model, the hybrid information mixing module, is applied to the stock price movement prediction to conduct a price fluctuation prediction experiment in a stock market with high volatility. In addition, the accuracy, Matthews correlation coefficient (MCC) and F1 score for the stock price movement prediction were used to verify the performance of the hybrid information mixing module.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3258695</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>bidirectional encoder representations from transformer(BERT) ; Correlation coefficients ; Deep learning ; Feature extraction ; Fluctuations ; gated recurrent units(GRU) ; Modules ; multilayer perceptron(MLP) ; Multilayer perceptrons ; Predictive models ; Securities markets ; Social networking (online) ; Stock exchanges ; Stock markets ; Stock movement prediction ; time-series forecasting ; Volatility</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-92ad1398e53180b590d5061881498ddb312b3b1870a0554d07d8cbe4fb18a9a3</citedby><cites>FETCH-LOGICAL-c409t-92ad1398e53180b590d5061881498ddb312b3b1870a0554d07d8cbe4fb18a9a3</cites><orcidid>0000-0003-2596-305X ; 0000-0002-2114-0120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10075550$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27632,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Choi, Jooweon</creatorcontrib><creatorcontrib>Yoo, Shiyong</creatorcontrib><creatorcontrib>Zhou, Xiao</creatorcontrib><creatorcontrib>Kim, Youngbin</creatorcontrib><title>Hybrid Information Mixing Module for Stock Movement Prediction</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the continuing active research on deep learning, research on stock price prediction using deep learning has been actively conducted in the financial industry. This paper proposes a method for predicting stock price movement using stock and news data. The stock market is affected by many variables; thus, market volatility should be considered for predicting stock price movement. Because stock markets are efficient, all kinds of information are quickly reflected in stock prices. We create a new fusion mix by combining price and text data features and propose a hybrid information mixing module designed using two map blocks for effective interaction between the two features. We extract the multimodal interaction between the time-series features of the price data and the semantic features of the text data. In this paper, a multilayer perceptron-based model, the hybrid information mixing module, is applied to the stock price movement prediction to conduct a price fluctuation prediction experiment in a stock market with high volatility. In addition, the accuracy, Matthews correlation coefficient (MCC) and F1 score for the stock price movement prediction were used to verify the performance of the hybrid information mixing module.</description><subject>bidirectional encoder representations from transformer(BERT)</subject><subject>Correlation coefficients</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Fluctuations</subject><subject>gated recurrent units(GRU)</subject><subject>Modules</subject><subject>multilayer perceptron(MLP)</subject><subject>Multilayer perceptrons</subject><subject>Predictive models</subject><subject>Securities markets</subject><subject>Social networking (online)</subject><subject>Stock exchanges</subject><subject>Stock markets</subject><subject>Stock movement prediction</subject><subject>time-series forecasting</subject><subject>Volatility</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkFFLwzAUhYMoOOZ-gT4UfO68SZo2eRFGmW6wobC9hzRJR-bWzLQT9-_N7BDzkFw-zjk3HITuMYwxBvE0KcvpajUmQOiYEsZzwa7QgOBcpJTR_PrffItGbbuFeHhErBig59mpCs4k86b2Ya8655tk6b5ds0mW3hx3Nok8WXVef0TwZfe26ZL3YI3TZ-0duqnVrrWjyztE65fpupyli7fXeTlZpDoD0aWCKIOp4JZRzKFiAgyDHHOOM8GNqSgmFa0wL0ABY5mBwnBd2ayOTAlFh2jexxqvtvIQ3F6Fk_TKyV_gw0aq0Dm9s9JwXltTMCCQZ5DngpBKZ6rQillhjY5Zj33WIfjPo207ufXH0MTfS1IIgmnG4zVEtFfp4Ns22PpvKwZ5rl32tctz7fJSe3Q99C5nrf3ngIIxBvQHGEN8mQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Choi, Jooweon</creator><creator>Yoo, Shiyong</creator><creator>Zhou, Xiao</creator><creator>Kim, Youngbin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2596-305X</orcidid><orcidid>https://orcid.org/0000-0002-2114-0120</orcidid></search><sort><creationdate>20230101</creationdate><title>Hybrid Information Mixing Module for Stock Movement Prediction</title><author>Choi, Jooweon ; Yoo, Shiyong ; Zhou, Xiao ; Kim, Youngbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-92ad1398e53180b590d5061881498ddb312b3b1870a0554d07d8cbe4fb18a9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>bidirectional encoder representations from transformer(BERT)</topic><topic>Correlation coefficients</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Fluctuations</topic><topic>gated recurrent units(GRU)</topic><topic>Modules</topic><topic>multilayer perceptron(MLP)</topic><topic>Multilayer perceptrons</topic><topic>Predictive models</topic><topic>Securities markets</topic><topic>Social networking (online)</topic><topic>Stock exchanges</topic><topic>Stock markets</topic><topic>Stock movement prediction</topic><topic>time-series forecasting</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Jooweon</creatorcontrib><creatorcontrib>Yoo, Shiyong</creatorcontrib><creatorcontrib>Zhou, Xiao</creatorcontrib><creatorcontrib>Kim, Youngbin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Jooweon</au><au>Yoo, Shiyong</au><au>Zhou, Xiao</au><au>Kim, Youngbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Information Mixing Module for Stock Movement Prediction</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the continuing active research on deep learning, research on stock price prediction using deep learning has been actively conducted in the financial industry. This paper proposes a method for predicting stock price movement using stock and news data. The stock market is affected by many variables; thus, market volatility should be considered for predicting stock price movement. Because stock markets are efficient, all kinds of information are quickly reflected in stock prices. We create a new fusion mix by combining price and text data features and propose a hybrid information mixing module designed using two map blocks for effective interaction between the two features. We extract the multimodal interaction between the time-series features of the price data and the semantic features of the text data. In this paper, a multilayer perceptron-based model, the hybrid information mixing module, is applied to the stock price movement prediction to conduct a price fluctuation prediction experiment in a stock market with high volatility. In addition, the accuracy, Matthews correlation coefficient (MCC) and F1 score for the stock price movement prediction were used to verify the performance of the hybrid information mixing module.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3258695</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2596-305X</orcidid><orcidid>https://orcid.org/0000-0002-2114-0120</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d88fed7502064066922bc4a7ca5e9edc
source IEEE Xplore Open Access Journals
subjects bidirectional encoder representations from transformer(BERT)
Correlation coefficients
Deep learning
Feature extraction
Fluctuations
gated recurrent units(GRU)
Modules
multilayer perceptron(MLP)
Multilayer perceptrons
Predictive models
Securities markets
Social networking (online)
Stock exchanges
Stock markets
Stock movement prediction
time-series forecasting
Volatility
title Hybrid Information Mixing Module for Stock Movement Prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A30%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Information%20Mixing%20Module%20for%20Stock%20Movement%20Prediction&rft.jtitle=IEEE%20access&rft.au=Choi,%20Jooweon&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3258695&rft_dat=%3Cproquest_doaj_%3E2792134821%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-92ad1398e53180b590d5061881498ddb312b3b1870a0554d07d8cbe4fb18a9a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2792134821&rft_id=info:pmid/&rft_ieee_id=10075550&rfr_iscdi=true