Loading…
Hybrid Information Mixing Module for Stock Movement Prediction
With the continuing active research on deep learning, research on stock price prediction using deep learning has been actively conducted in the financial industry. This paper proposes a method for predicting stock price movement using stock and news data. The stock market is affected by many variabl...
Saved in:
Published in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c409t-92ad1398e53180b590d5061881498ddb312b3b1870a0554d07d8cbe4fb18a9a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c409t-92ad1398e53180b590d5061881498ddb312b3b1870a0554d07d8cbe4fb18a9a3 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Choi, Jooweon Yoo, Shiyong Zhou, Xiao Kim, Youngbin |
description | With the continuing active research on deep learning, research on stock price prediction using deep learning has been actively conducted in the financial industry. This paper proposes a method for predicting stock price movement using stock and news data. The stock market is affected by many variables; thus, market volatility should be considered for predicting stock price movement. Because stock markets are efficient, all kinds of information are quickly reflected in stock prices. We create a new fusion mix by combining price and text data features and propose a hybrid information mixing module designed using two map blocks for effective interaction between the two features. We extract the multimodal interaction between the time-series features of the price data and the semantic features of the text data. In this paper, a multilayer perceptron-based model, the hybrid information mixing module, is applied to the stock price movement prediction to conduct a price fluctuation prediction experiment in a stock market with high volatility. In addition, the accuracy, Matthews correlation coefficient (MCC) and F1 score for the stock price movement prediction were used to verify the performance of the hybrid information mixing module. |
doi_str_mv | 10.1109/ACCESS.2023.3258695 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d88fed7502064066922bc4a7ca5e9edc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10075550</ieee_id><doaj_id>oai_doaj_org_article_d88fed7502064066922bc4a7ca5e9edc</doaj_id><sourcerecordid>2792134821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-92ad1398e53180b590d5061881498ddb312b3b1870a0554d07d8cbe4fb18a9a3</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYMoOOZ-gT4UfO68SZo2eRFGmW6wobC9hzRJR-bWzLQT9-_N7BDzkFw-zjk3HITuMYwxBvE0KcvpajUmQOiYEsZzwa7QgOBcpJTR_PrffItGbbuFeHhErBig59mpCs4k86b2Ya8655tk6b5ds0mW3hx3Nok8WXVef0TwZfe26ZL3YI3TZ-0duqnVrrWjyztE65fpupyli7fXeTlZpDoD0aWCKIOp4JZRzKFiAgyDHHOOM8GNqSgmFa0wL0ABY5mBwnBd2ayOTAlFh2jexxqvtvIQ3F6Fk_TKyV_gw0aq0Dm9s9JwXltTMCCQZ5DngpBKZ6rQillhjY5Zj33WIfjPo207ufXH0MTfS1IIgmnG4zVEtFfp4Ns22PpvKwZ5rl32tctz7fJSe3Q99C5nrf3ngIIxBvQHGEN8mQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792134821</pqid></control><display><type>article</type><title>Hybrid Information Mixing Module for Stock Movement Prediction</title><source>IEEE Xplore Open Access Journals</source><creator>Choi, Jooweon ; Yoo, Shiyong ; Zhou, Xiao ; Kim, Youngbin</creator><creatorcontrib>Choi, Jooweon ; Yoo, Shiyong ; Zhou, Xiao ; Kim, Youngbin</creatorcontrib><description>With the continuing active research on deep learning, research on stock price prediction using deep learning has been actively conducted in the financial industry. This paper proposes a method for predicting stock price movement using stock and news data. The stock market is affected by many variables; thus, market volatility should be considered for predicting stock price movement. Because stock markets are efficient, all kinds of information are quickly reflected in stock prices. We create a new fusion mix by combining price and text data features and propose a hybrid information mixing module designed using two map blocks for effective interaction between the two features. We extract the multimodal interaction between the time-series features of the price data and the semantic features of the text data. In this paper, a multilayer perceptron-based model, the hybrid information mixing module, is applied to the stock price movement prediction to conduct a price fluctuation prediction experiment in a stock market with high volatility. In addition, the accuracy, Matthews correlation coefficient (MCC) and F1 score for the stock price movement prediction were used to verify the performance of the hybrid information mixing module.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3258695</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>bidirectional encoder representations from transformer(BERT) ; Correlation coefficients ; Deep learning ; Feature extraction ; Fluctuations ; gated recurrent units(GRU) ; Modules ; multilayer perceptron(MLP) ; Multilayer perceptrons ; Predictive models ; Securities markets ; Social networking (online) ; Stock exchanges ; Stock markets ; Stock movement prediction ; time-series forecasting ; Volatility</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-92ad1398e53180b590d5061881498ddb312b3b1870a0554d07d8cbe4fb18a9a3</citedby><cites>FETCH-LOGICAL-c409t-92ad1398e53180b590d5061881498ddb312b3b1870a0554d07d8cbe4fb18a9a3</cites><orcidid>0000-0003-2596-305X ; 0000-0002-2114-0120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10075550$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27632,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Choi, Jooweon</creatorcontrib><creatorcontrib>Yoo, Shiyong</creatorcontrib><creatorcontrib>Zhou, Xiao</creatorcontrib><creatorcontrib>Kim, Youngbin</creatorcontrib><title>Hybrid Information Mixing Module for Stock Movement Prediction</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the continuing active research on deep learning, research on stock price prediction using deep learning has been actively conducted in the financial industry. This paper proposes a method for predicting stock price movement using stock and news data. The stock market is affected by many variables; thus, market volatility should be considered for predicting stock price movement. Because stock markets are efficient, all kinds of information are quickly reflected in stock prices. We create a new fusion mix by combining price and text data features and propose a hybrid information mixing module designed using two map blocks for effective interaction between the two features. We extract the multimodal interaction between the time-series features of the price data and the semantic features of the text data. In this paper, a multilayer perceptron-based model, the hybrid information mixing module, is applied to the stock price movement prediction to conduct a price fluctuation prediction experiment in a stock market with high volatility. In addition, the accuracy, Matthews correlation coefficient (MCC) and F1 score for the stock price movement prediction were used to verify the performance of the hybrid information mixing module.</description><subject>bidirectional encoder representations from transformer(BERT)</subject><subject>Correlation coefficients</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Fluctuations</subject><subject>gated recurrent units(GRU)</subject><subject>Modules</subject><subject>multilayer perceptron(MLP)</subject><subject>Multilayer perceptrons</subject><subject>Predictive models</subject><subject>Securities markets</subject><subject>Social networking (online)</subject><subject>Stock exchanges</subject><subject>Stock markets</subject><subject>Stock movement prediction</subject><subject>time-series forecasting</subject><subject>Volatility</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkFFLwzAUhYMoOOZ-gT4UfO68SZo2eRFGmW6wobC9hzRJR-bWzLQT9-_N7BDzkFw-zjk3HITuMYwxBvE0KcvpajUmQOiYEsZzwa7QgOBcpJTR_PrffItGbbuFeHhErBig59mpCs4k86b2Ya8655tk6b5ds0mW3hx3Nok8WXVef0TwZfe26ZL3YI3TZ-0duqnVrrWjyztE65fpupyli7fXeTlZpDoD0aWCKIOp4JZRzKFiAgyDHHOOM8GNqSgmFa0wL0ABY5mBwnBd2ayOTAlFh2jexxqvtvIQ3F6Fk_TKyV_gw0aq0Dm9s9JwXltTMCCQZ5DngpBKZ6rQillhjY5Zj33WIfjPo207ufXH0MTfS1IIgmnG4zVEtFfp4Ns22PpvKwZ5rl32tctz7fJSe3Q99C5nrf3ngIIxBvQHGEN8mQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Choi, Jooweon</creator><creator>Yoo, Shiyong</creator><creator>Zhou, Xiao</creator><creator>Kim, Youngbin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2596-305X</orcidid><orcidid>https://orcid.org/0000-0002-2114-0120</orcidid></search><sort><creationdate>20230101</creationdate><title>Hybrid Information Mixing Module for Stock Movement Prediction</title><author>Choi, Jooweon ; Yoo, Shiyong ; Zhou, Xiao ; Kim, Youngbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-92ad1398e53180b590d5061881498ddb312b3b1870a0554d07d8cbe4fb18a9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>bidirectional encoder representations from transformer(BERT)</topic><topic>Correlation coefficients</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Fluctuations</topic><topic>gated recurrent units(GRU)</topic><topic>Modules</topic><topic>multilayer perceptron(MLP)</topic><topic>Multilayer perceptrons</topic><topic>Predictive models</topic><topic>Securities markets</topic><topic>Social networking (online)</topic><topic>Stock exchanges</topic><topic>Stock markets</topic><topic>Stock movement prediction</topic><topic>time-series forecasting</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Jooweon</creatorcontrib><creatorcontrib>Yoo, Shiyong</creatorcontrib><creatorcontrib>Zhou, Xiao</creatorcontrib><creatorcontrib>Kim, Youngbin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Jooweon</au><au>Yoo, Shiyong</au><au>Zhou, Xiao</au><au>Kim, Youngbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Information Mixing Module for Stock Movement Prediction</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the continuing active research on deep learning, research on stock price prediction using deep learning has been actively conducted in the financial industry. This paper proposes a method for predicting stock price movement using stock and news data. The stock market is affected by many variables; thus, market volatility should be considered for predicting stock price movement. Because stock markets are efficient, all kinds of information are quickly reflected in stock prices. We create a new fusion mix by combining price and text data features and propose a hybrid information mixing module designed using two map blocks for effective interaction between the two features. We extract the multimodal interaction between the time-series features of the price data and the semantic features of the text data. In this paper, a multilayer perceptron-based model, the hybrid information mixing module, is applied to the stock price movement prediction to conduct a price fluctuation prediction experiment in a stock market with high volatility. In addition, the accuracy, Matthews correlation coefficient (MCC) and F1 score for the stock price movement prediction were used to verify the performance of the hybrid information mixing module.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3258695</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2596-305X</orcidid><orcidid>https://orcid.org/0000-0002-2114-0120</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d88fed7502064066922bc4a7ca5e9edc |
source | IEEE Xplore Open Access Journals |
subjects | bidirectional encoder representations from transformer(BERT) Correlation coefficients Deep learning Feature extraction Fluctuations gated recurrent units(GRU) Modules multilayer perceptron(MLP) Multilayer perceptrons Predictive models Securities markets Social networking (online) Stock exchanges Stock markets Stock movement prediction time-series forecasting Volatility |
title | Hybrid Information Mixing Module for Stock Movement Prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A30%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Information%20Mixing%20Module%20for%20Stock%20Movement%20Prediction&rft.jtitle=IEEE%20access&rft.au=Choi,%20Jooweon&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3258695&rft_dat=%3Cproquest_doaj_%3E2792134821%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-92ad1398e53180b590d5061881498ddb312b3b1870a0554d07d8cbe4fb18a9a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2792134821&rft_id=info:pmid/&rft_ieee_id=10075550&rfr_iscdi=true |