Loading…
Energetic costs regulated by cell mechanics and confinement are predictive of migration path during decision-making
Cell migration during the invasion-metastasis cascade requires cancer cells to navigate a spatially complex microenvironment that presents directional choices to migrating cells. Here, we investigate cellular energetics during migration decision-making in confined spaces. Theoretical and experimenta...
Saved in:
Published in: | Nature communications 2019-09, Vol.10 (1), p.4185-12, Article 4185 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c606t-edf73dcc4883ea226af3e5d00472f9598bceb9c5a36185fbe89413b4898aebc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c606t-edf73dcc4883ea226af3e5d00472f9598bceb9c5a36185fbe89413b4898aebc3 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 4185 |
container_title | Nature communications |
container_volume | 10 |
creator | Zanotelli, Matthew R. Rahman-Zaman, Aniqua VanderBurgh, Jacob A. Taufalele, Paul V. Jain, Aadhar Erickson, David Bordeleau, Francois Reinhart-King, Cynthia A. |
description | Cell migration during the invasion-metastasis cascade requires cancer cells to navigate a spatially complex microenvironment that presents directional choices to migrating cells. Here, we investigate cellular energetics during migration decision-making in confined spaces. Theoretical and experimental data show that energetic costs for migration through confined spaces are mediated by a balance between cell and matrix compliance as well as the degree of spatial confinement to direct decision-making. Energetic costs, driven by the cellular work needed to generate force for matrix displacement, increase with increasing cell stiffness, matrix stiffness, and degree of spatial confinement, limiting migration. By assessing energetic costs between possible migration paths, we can predict the probability of migration choice. Our findings indicate that motility in confined spaces imposes high energetic demands on migrating cells, and cells migrate in the direction of least confinement to minimize energetic costs. Therefore, therapeutically targeting metabolism may limit cancer cell migration and metastasis.
Migrating cells tune their energy utilization in response to their microenvironment, but how cellular energetics direct navigation remains unclear. Here, the authors report that energetic costs for motility, regulated by cell mechanics and confinement, predict the probability of migration choice. |
doi_str_mv | 10.1038/s41467-019-12155-z |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d89947d85d604810a3c24366f9f1743c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d89947d85d604810a3c24366f9f1743c</doaj_id><sourcerecordid>2290903565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-edf73dcc4883ea226af3e5d00472f9598bceb9c5a36185fbe89413b4898aebc3</originalsourceid><addsrcrecordid>eNp9kk1v3CAQhq2qVRNt8wd6qJB66cUpmA_DpVIVpU2kSL3kjjCMvWxtcMGOlPz6srtpmvRQLsDwzAszvFX1nuBzgqn8nBlhoq0xUTVpCOf1w6vqtMGM1KRt6Otn65PqLOcdLoMqIhl7W51QwolShJ1W-TJAGmDxFtmYl4wSDOtoFnCou0cWxhFNYLcmeJuRCa5QofcBJggLMgnQnMB5u_g7QLFHkx-SWXwMaDbLFrk1-TAgB9bnEqwn87Ps31VvejNmOHucN9Xtt8vbi6v65sf364uvN7UVWCw1uL6lzlomJQXTNML0FLjDmLVNr7iSnYVOWW6oIJL3HUjFCO2YVNJAZ-mmuj7Kumh2ek5-MuleR-P1IRDToE0qhY-gnVSKtU5yJzCTBBtqG0aF6FVPWkb3Wl-OWvPaTeBsqT6Z8YXoy5Pgt3qId1q0jPHyCZvq06NAir9WyIuefN631wSIa9ZNo7DClAte0I__oLu4plA6daCwYIyIQjVHyqaYc4L-6TEE671D9NEhujhEHxyiH0rSh-dlPKX88UMB6BHI8_7nIP29-z-yvwGHG8ju</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290064416</pqid></control><display><type>article</type><title>Energetic costs regulated by cell mechanics and confinement are predictive of migration path during decision-making</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zanotelli, Matthew R. ; Rahman-Zaman, Aniqua ; VanderBurgh, Jacob A. ; Taufalele, Paul V. ; Jain, Aadhar ; Erickson, David ; Bordeleau, Francois ; Reinhart-King, Cynthia A.</creator><creatorcontrib>Zanotelli, Matthew R. ; Rahman-Zaman, Aniqua ; VanderBurgh, Jacob A. ; Taufalele, Paul V. ; Jain, Aadhar ; Erickson, David ; Bordeleau, Francois ; Reinhart-King, Cynthia A.</creatorcontrib><description>Cell migration during the invasion-metastasis cascade requires cancer cells to navigate a spatially complex microenvironment that presents directional choices to migrating cells. Here, we investigate cellular energetics during migration decision-making in confined spaces. Theoretical and experimental data show that energetic costs for migration through confined spaces are mediated by a balance between cell and matrix compliance as well as the degree of spatial confinement to direct decision-making. Energetic costs, driven by the cellular work needed to generate force for matrix displacement, increase with increasing cell stiffness, matrix stiffness, and degree of spatial confinement, limiting migration. By assessing energetic costs between possible migration paths, we can predict the probability of migration choice. Our findings indicate that motility in confined spaces imposes high energetic demands on migrating cells, and cells migrate in the direction of least confinement to minimize energetic costs. Therefore, therapeutically targeting metabolism may limit cancer cell migration and metastasis.
Migrating cells tune their energy utilization in response to their microenvironment, but how cellular energetics direct navigation remains unclear. Here, the authors report that energetic costs for motility, regulated by cell mechanics and confinement, predict the probability of migration choice.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-019-12155-z</identifier><identifier>PMID: 31519914</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 14 ; 14/19 ; 14/3 ; 14/63 ; 142/126 ; 631/80/84/750 ; 639/166/985 ; Adenosine Diphosphate - metabolism ; Adenosine Triphosphate - metabolism ; Biomedical Engineering ; Cancer ; Caveolin 1 - genetics ; Caveolin 1 - metabolism ; Cell adhesion & migration ; Cell Line, Tumor ; Cell migration ; Cell Movement - genetics ; Cell Movement - physiology ; Confined spaces ; Confinement ; Cost assessments ; Costs ; Decision Making ; Decision theory ; Glucose - metabolism ; Humanities and Social Sciences ; Humans ; Metabolism ; Metastases ; Metastasis ; Microscopy, Atomic Force ; Microscopy, Confocal ; Microscopy, Phase-Contrast ; multidisciplinary ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Science ; Science (multidisciplinary) ; Stiffness</subject><ispartof>Nature communications, 2019-09, Vol.10 (1), p.4185-12, Article 4185</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-edf73dcc4883ea226af3e5d00472f9598bceb9c5a36185fbe89413b4898aebc3</citedby><cites>FETCH-LOGICAL-c606t-edf73dcc4883ea226af3e5d00472f9598bceb9c5a36185fbe89413b4898aebc3</cites><orcidid>0000-0002-5114-1757 ; 0000-0001-6959-3914 ; 0000-0001-8547-6451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2290064416/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2290064416?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31519914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zanotelli, Matthew R.</creatorcontrib><creatorcontrib>Rahman-Zaman, Aniqua</creatorcontrib><creatorcontrib>VanderBurgh, Jacob A.</creatorcontrib><creatorcontrib>Taufalele, Paul V.</creatorcontrib><creatorcontrib>Jain, Aadhar</creatorcontrib><creatorcontrib>Erickson, David</creatorcontrib><creatorcontrib>Bordeleau, Francois</creatorcontrib><creatorcontrib>Reinhart-King, Cynthia A.</creatorcontrib><title>Energetic costs regulated by cell mechanics and confinement are predictive of migration path during decision-making</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Cell migration during the invasion-metastasis cascade requires cancer cells to navigate a spatially complex microenvironment that presents directional choices to migrating cells. Here, we investigate cellular energetics during migration decision-making in confined spaces. Theoretical and experimental data show that energetic costs for migration through confined spaces are mediated by a balance between cell and matrix compliance as well as the degree of spatial confinement to direct decision-making. Energetic costs, driven by the cellular work needed to generate force for matrix displacement, increase with increasing cell stiffness, matrix stiffness, and degree of spatial confinement, limiting migration. By assessing energetic costs between possible migration paths, we can predict the probability of migration choice. Our findings indicate that motility in confined spaces imposes high energetic demands on migrating cells, and cells migrate in the direction of least confinement to minimize energetic costs. Therefore, therapeutically targeting metabolism may limit cancer cell migration and metastasis.
Migrating cells tune their energy utilization in response to their microenvironment, but how cellular energetics direct navigation remains unclear. Here, the authors report that energetic costs for motility, regulated by cell mechanics and confinement, predict the probability of migration choice.</description><subject>13</subject><subject>14</subject><subject>14/19</subject><subject>14/3</subject><subject>14/63</subject><subject>142/126</subject><subject>631/80/84/750</subject><subject>639/166/985</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Biomedical Engineering</subject><subject>Cancer</subject><subject>Caveolin 1 - genetics</subject><subject>Caveolin 1 - metabolism</subject><subject>Cell adhesion & migration</subject><subject>Cell Line, Tumor</subject><subject>Cell migration</subject><subject>Cell Movement - genetics</subject><subject>Cell Movement - physiology</subject><subject>Confined spaces</subject><subject>Confinement</subject><subject>Cost assessments</subject><subject>Costs</subject><subject>Decision Making</subject><subject>Decision theory</subject><subject>Glucose - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Metabolism</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Phase-Contrast</subject><subject>multidisciplinary</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stiffness</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v3CAQhq2qVRNt8wd6qJB66cUpmA_DpVIVpU2kSL3kjjCMvWxtcMGOlPz6srtpmvRQLsDwzAszvFX1nuBzgqn8nBlhoq0xUTVpCOf1w6vqtMGM1KRt6Otn65PqLOcdLoMqIhl7W51QwolShJ1W-TJAGmDxFtmYl4wSDOtoFnCou0cWxhFNYLcmeJuRCa5QofcBJggLMgnQnMB5u_g7QLFHkx-SWXwMaDbLFrk1-TAgB9bnEqwn87Ps31VvejNmOHucN9Xtt8vbi6v65sf364uvN7UVWCw1uL6lzlomJQXTNML0FLjDmLVNr7iSnYVOWW6oIJL3HUjFCO2YVNJAZ-mmuj7Kumh2ek5-MuleR-P1IRDToE0qhY-gnVSKtU5yJzCTBBtqG0aF6FVPWkb3Wl-OWvPaTeBsqT6Z8YXoy5Pgt3qId1q0jPHyCZvq06NAir9WyIuefN631wSIa9ZNo7DClAte0I__oLu4plA6daCwYIyIQjVHyqaYc4L-6TEE671D9NEhujhEHxyiH0rSh-dlPKX88UMB6BHI8_7nIP29-z-yvwGHG8ju</recordid><startdate>20190913</startdate><enddate>20190913</enddate><creator>Zanotelli, Matthew R.</creator><creator>Rahman-Zaman, Aniqua</creator><creator>VanderBurgh, Jacob A.</creator><creator>Taufalele, Paul V.</creator><creator>Jain, Aadhar</creator><creator>Erickson, David</creator><creator>Bordeleau, Francois</creator><creator>Reinhart-King, Cynthia A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5114-1757</orcidid><orcidid>https://orcid.org/0000-0001-6959-3914</orcidid><orcidid>https://orcid.org/0000-0001-8547-6451</orcidid></search><sort><creationdate>20190913</creationdate><title>Energetic costs regulated by cell mechanics and confinement are predictive of migration path during decision-making</title><author>Zanotelli, Matthew R. ; Rahman-Zaman, Aniqua ; VanderBurgh, Jacob A. ; Taufalele, Paul V. ; Jain, Aadhar ; Erickson, David ; Bordeleau, Francois ; Reinhart-King, Cynthia A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-edf73dcc4883ea226af3e5d00472f9598bceb9c5a36185fbe89413b4898aebc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13</topic><topic>14</topic><topic>14/19</topic><topic>14/3</topic><topic>14/63</topic><topic>142/126</topic><topic>631/80/84/750</topic><topic>639/166/985</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Biomedical Engineering</topic><topic>Cancer</topic><topic>Caveolin 1 - genetics</topic><topic>Caveolin 1 - metabolism</topic><topic>Cell adhesion & migration</topic><topic>Cell Line, Tumor</topic><topic>Cell migration</topic><topic>Cell Movement - genetics</topic><topic>Cell Movement - physiology</topic><topic>Confined spaces</topic><topic>Confinement</topic><topic>Cost assessments</topic><topic>Costs</topic><topic>Decision Making</topic><topic>Decision theory</topic><topic>Glucose - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Metabolism</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Phase-Contrast</topic><topic>multidisciplinary</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zanotelli, Matthew R.</creatorcontrib><creatorcontrib>Rahman-Zaman, Aniqua</creatorcontrib><creatorcontrib>VanderBurgh, Jacob A.</creatorcontrib><creatorcontrib>Taufalele, Paul V.</creatorcontrib><creatorcontrib>Jain, Aadhar</creatorcontrib><creatorcontrib>Erickson, David</creatorcontrib><creatorcontrib>Bordeleau, Francois</creatorcontrib><creatorcontrib>Reinhart-King, Cynthia A.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zanotelli, Matthew R.</au><au>Rahman-Zaman, Aniqua</au><au>VanderBurgh, Jacob A.</au><au>Taufalele, Paul V.</au><au>Jain, Aadhar</au><au>Erickson, David</au><au>Bordeleau, Francois</au><au>Reinhart-King, Cynthia A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energetic costs regulated by cell mechanics and confinement are predictive of migration path during decision-making</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2019-09-13</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>4185</spage><epage>12</epage><pages>4185-12</pages><artnum>4185</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Cell migration during the invasion-metastasis cascade requires cancer cells to navigate a spatially complex microenvironment that presents directional choices to migrating cells. Here, we investigate cellular energetics during migration decision-making in confined spaces. Theoretical and experimental data show that energetic costs for migration through confined spaces are mediated by a balance between cell and matrix compliance as well as the degree of spatial confinement to direct decision-making. Energetic costs, driven by the cellular work needed to generate force for matrix displacement, increase with increasing cell stiffness, matrix stiffness, and degree of spatial confinement, limiting migration. By assessing energetic costs between possible migration paths, we can predict the probability of migration choice. Our findings indicate that motility in confined spaces imposes high energetic demands on migrating cells, and cells migrate in the direction of least confinement to minimize energetic costs. Therefore, therapeutically targeting metabolism may limit cancer cell migration and metastasis.
Migrating cells tune their energy utilization in response to their microenvironment, but how cellular energetics direct navigation remains unclear. Here, the authors report that energetic costs for motility, regulated by cell mechanics and confinement, predict the probability of migration choice.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31519914</pmid><doi>10.1038/s41467-019-12155-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5114-1757</orcidid><orcidid>https://orcid.org/0000-0001-6959-3914</orcidid><orcidid>https://orcid.org/0000-0001-8547-6451</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2019-09, Vol.10 (1), p.4185-12, Article 4185 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_d89947d85d604810a3c24366f9f1743c |
source | PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - Connect here FIRST to enable access; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13 14 14/19 14/3 14/63 142/126 631/80/84/750 639/166/985 Adenosine Diphosphate - metabolism Adenosine Triphosphate - metabolism Biomedical Engineering Cancer Caveolin 1 - genetics Caveolin 1 - metabolism Cell adhesion & migration Cell Line, Tumor Cell migration Cell Movement - genetics Cell Movement - physiology Confined spaces Confinement Cost assessments Costs Decision Making Decision theory Glucose - metabolism Humanities and Social Sciences Humans Metabolism Metastases Metastasis Microscopy, Atomic Force Microscopy, Confocal Microscopy, Phase-Contrast multidisciplinary RNA, Small Interfering - genetics RNA, Small Interfering - metabolism Science Science (multidisciplinary) Stiffness |
title | Energetic costs regulated by cell mechanics and confinement are predictive of migration path during decision-making |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energetic%20costs%20regulated%20by%20cell%20mechanics%20and%20confinement%20are%20predictive%20of%20migration%20path%20during%20decision-making&rft.jtitle=Nature%20communications&rft.au=Zanotelli,%20Matthew%20R.&rft.date=2019-09-13&rft.volume=10&rft.issue=1&rft.spage=4185&rft.epage=12&rft.pages=4185-12&rft.artnum=4185&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-019-12155-z&rft_dat=%3Cproquest_doaj_%3E2290903565%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-edf73dcc4883ea226af3e5d00472f9598bceb9c5a36185fbe89413b4898aebc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2290064416&rft_id=info:pmid/31519914&rfr_iscdi=true |