Loading…

Energetic costs regulated by cell mechanics and confinement are predictive of migration path during decision-making

Cell migration during the invasion-metastasis cascade requires cancer cells to navigate a spatially complex microenvironment that presents directional choices to migrating cells. Here, we investigate cellular energetics during migration decision-making in confined spaces. Theoretical and experimenta...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2019-09, Vol.10 (1), p.4185-12, Article 4185
Main Authors: Zanotelli, Matthew R., Rahman-Zaman, Aniqua, VanderBurgh, Jacob A., Taufalele, Paul V., Jain, Aadhar, Erickson, David, Bordeleau, Francois, Reinhart-King, Cynthia A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c606t-edf73dcc4883ea226af3e5d00472f9598bceb9c5a36185fbe89413b4898aebc3
cites cdi_FETCH-LOGICAL-c606t-edf73dcc4883ea226af3e5d00472f9598bceb9c5a36185fbe89413b4898aebc3
container_end_page 12
container_issue 1
container_start_page 4185
container_title Nature communications
container_volume 10
creator Zanotelli, Matthew R.
Rahman-Zaman, Aniqua
VanderBurgh, Jacob A.
Taufalele, Paul V.
Jain, Aadhar
Erickson, David
Bordeleau, Francois
Reinhart-King, Cynthia A.
description Cell migration during the invasion-metastasis cascade requires cancer cells to navigate a spatially complex microenvironment that presents directional choices to migrating cells. Here, we investigate cellular energetics during migration decision-making in confined spaces. Theoretical and experimental data show that energetic costs for migration through confined spaces are mediated by a balance between cell and matrix compliance as well as the degree of spatial confinement to direct decision-making. Energetic costs, driven by the cellular work needed to generate force for matrix displacement, increase with increasing cell stiffness, matrix stiffness, and degree of spatial confinement, limiting migration. By assessing energetic costs between possible migration paths, we can predict the probability of migration choice. Our findings indicate that motility in confined spaces imposes high energetic demands on migrating cells, and cells migrate in the direction of least confinement to minimize energetic costs. Therefore, therapeutically targeting metabolism may limit cancer cell migration and metastasis. Migrating cells tune their energy utilization in response to their microenvironment, but how cellular energetics direct navigation remains unclear. Here, the authors report that energetic costs for motility, regulated by cell mechanics and confinement, predict the probability of migration choice.
doi_str_mv 10.1038/s41467-019-12155-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d89947d85d604810a3c24366f9f1743c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d89947d85d604810a3c24366f9f1743c</doaj_id><sourcerecordid>2290903565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-edf73dcc4883ea226af3e5d00472f9598bceb9c5a36185fbe89413b4898aebc3</originalsourceid><addsrcrecordid>eNp9kk1v3CAQhq2qVRNt8wd6qJB66cUpmA_DpVIVpU2kSL3kjjCMvWxtcMGOlPz6srtpmvRQLsDwzAszvFX1nuBzgqn8nBlhoq0xUTVpCOf1w6vqtMGM1KRt6Otn65PqLOcdLoMqIhl7W51QwolShJ1W-TJAGmDxFtmYl4wSDOtoFnCou0cWxhFNYLcmeJuRCa5QofcBJggLMgnQnMB5u_g7QLFHkx-SWXwMaDbLFrk1-TAgB9bnEqwn87Ps31VvejNmOHucN9Xtt8vbi6v65sf364uvN7UVWCw1uL6lzlomJQXTNML0FLjDmLVNr7iSnYVOWW6oIJL3HUjFCO2YVNJAZ-mmuj7Kumh2ek5-MuleR-P1IRDToE0qhY-gnVSKtU5yJzCTBBtqG0aF6FVPWkb3Wl-OWvPaTeBsqT6Z8YXoy5Pgt3qId1q0jPHyCZvq06NAir9WyIuefN631wSIa9ZNo7DClAte0I__oLu4plA6daCwYIyIQjVHyqaYc4L-6TEE671D9NEhujhEHxyiH0rSh-dlPKX88UMB6BHI8_7nIP29-z-yvwGHG8ju</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290064416</pqid></control><display><type>article</type><title>Energetic costs regulated by cell mechanics and confinement are predictive of migration path during decision-making</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zanotelli, Matthew R. ; Rahman-Zaman, Aniqua ; VanderBurgh, Jacob A. ; Taufalele, Paul V. ; Jain, Aadhar ; Erickson, David ; Bordeleau, Francois ; Reinhart-King, Cynthia A.</creator><creatorcontrib>Zanotelli, Matthew R. ; Rahman-Zaman, Aniqua ; VanderBurgh, Jacob A. ; Taufalele, Paul V. ; Jain, Aadhar ; Erickson, David ; Bordeleau, Francois ; Reinhart-King, Cynthia A.</creatorcontrib><description>Cell migration during the invasion-metastasis cascade requires cancer cells to navigate a spatially complex microenvironment that presents directional choices to migrating cells. Here, we investigate cellular energetics during migration decision-making in confined spaces. Theoretical and experimental data show that energetic costs for migration through confined spaces are mediated by a balance between cell and matrix compliance as well as the degree of spatial confinement to direct decision-making. Energetic costs, driven by the cellular work needed to generate force for matrix displacement, increase with increasing cell stiffness, matrix stiffness, and degree of spatial confinement, limiting migration. By assessing energetic costs between possible migration paths, we can predict the probability of migration choice. Our findings indicate that motility in confined spaces imposes high energetic demands on migrating cells, and cells migrate in the direction of least confinement to minimize energetic costs. Therefore, therapeutically targeting metabolism may limit cancer cell migration and metastasis. Migrating cells tune their energy utilization in response to their microenvironment, but how cellular energetics direct navigation remains unclear. Here, the authors report that energetic costs for motility, regulated by cell mechanics and confinement, predict the probability of migration choice.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-019-12155-z</identifier><identifier>PMID: 31519914</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 14 ; 14/19 ; 14/3 ; 14/63 ; 142/126 ; 631/80/84/750 ; 639/166/985 ; Adenosine Diphosphate - metabolism ; Adenosine Triphosphate - metabolism ; Biomedical Engineering ; Cancer ; Caveolin 1 - genetics ; Caveolin 1 - metabolism ; Cell adhesion &amp; migration ; Cell Line, Tumor ; Cell migration ; Cell Movement - genetics ; Cell Movement - physiology ; Confined spaces ; Confinement ; Cost assessments ; Costs ; Decision Making ; Decision theory ; Glucose - metabolism ; Humanities and Social Sciences ; Humans ; Metabolism ; Metastases ; Metastasis ; Microscopy, Atomic Force ; Microscopy, Confocal ; Microscopy, Phase-Contrast ; multidisciplinary ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Science ; Science (multidisciplinary) ; Stiffness</subject><ispartof>Nature communications, 2019-09, Vol.10 (1), p.4185-12, Article 4185</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-edf73dcc4883ea226af3e5d00472f9598bceb9c5a36185fbe89413b4898aebc3</citedby><cites>FETCH-LOGICAL-c606t-edf73dcc4883ea226af3e5d00472f9598bceb9c5a36185fbe89413b4898aebc3</cites><orcidid>0000-0002-5114-1757 ; 0000-0001-6959-3914 ; 0000-0001-8547-6451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2290064416/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2290064416?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31519914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zanotelli, Matthew R.</creatorcontrib><creatorcontrib>Rahman-Zaman, Aniqua</creatorcontrib><creatorcontrib>VanderBurgh, Jacob A.</creatorcontrib><creatorcontrib>Taufalele, Paul V.</creatorcontrib><creatorcontrib>Jain, Aadhar</creatorcontrib><creatorcontrib>Erickson, David</creatorcontrib><creatorcontrib>Bordeleau, Francois</creatorcontrib><creatorcontrib>Reinhart-King, Cynthia A.</creatorcontrib><title>Energetic costs regulated by cell mechanics and confinement are predictive of migration path during decision-making</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Cell migration during the invasion-metastasis cascade requires cancer cells to navigate a spatially complex microenvironment that presents directional choices to migrating cells. Here, we investigate cellular energetics during migration decision-making in confined spaces. Theoretical and experimental data show that energetic costs for migration through confined spaces are mediated by a balance between cell and matrix compliance as well as the degree of spatial confinement to direct decision-making. Energetic costs, driven by the cellular work needed to generate force for matrix displacement, increase with increasing cell stiffness, matrix stiffness, and degree of spatial confinement, limiting migration. By assessing energetic costs between possible migration paths, we can predict the probability of migration choice. Our findings indicate that motility in confined spaces imposes high energetic demands on migrating cells, and cells migrate in the direction of least confinement to minimize energetic costs. Therefore, therapeutically targeting metabolism may limit cancer cell migration and metastasis. Migrating cells tune their energy utilization in response to their microenvironment, but how cellular energetics direct navigation remains unclear. Here, the authors report that energetic costs for motility, regulated by cell mechanics and confinement, predict the probability of migration choice.</description><subject>13</subject><subject>14</subject><subject>14/19</subject><subject>14/3</subject><subject>14/63</subject><subject>142/126</subject><subject>631/80/84/750</subject><subject>639/166/985</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Biomedical Engineering</subject><subject>Cancer</subject><subject>Caveolin 1 - genetics</subject><subject>Caveolin 1 - metabolism</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Line, Tumor</subject><subject>Cell migration</subject><subject>Cell Movement - genetics</subject><subject>Cell Movement - physiology</subject><subject>Confined spaces</subject><subject>Confinement</subject><subject>Cost assessments</subject><subject>Costs</subject><subject>Decision Making</subject><subject>Decision theory</subject><subject>Glucose - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Metabolism</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Phase-Contrast</subject><subject>multidisciplinary</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stiffness</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v3CAQhq2qVRNt8wd6qJB66cUpmA_DpVIVpU2kSL3kjjCMvWxtcMGOlPz6srtpmvRQLsDwzAszvFX1nuBzgqn8nBlhoq0xUTVpCOf1w6vqtMGM1KRt6Otn65PqLOcdLoMqIhl7W51QwolShJ1W-TJAGmDxFtmYl4wSDOtoFnCou0cWxhFNYLcmeJuRCa5QofcBJggLMgnQnMB5u_g7QLFHkx-SWXwMaDbLFrk1-TAgB9bnEqwn87Ps31VvejNmOHucN9Xtt8vbi6v65sf364uvN7UVWCw1uL6lzlomJQXTNML0FLjDmLVNr7iSnYVOWW6oIJL3HUjFCO2YVNJAZ-mmuj7Kumh2ek5-MuleR-P1IRDToE0qhY-gnVSKtU5yJzCTBBtqG0aF6FVPWkb3Wl-OWvPaTeBsqT6Z8YXoy5Pgt3qId1q0jPHyCZvq06NAir9WyIuefN631wSIa9ZNo7DClAte0I__oLu4plA6daCwYIyIQjVHyqaYc4L-6TEE671D9NEhujhEHxyiH0rSh-dlPKX88UMB6BHI8_7nIP29-z-yvwGHG8ju</recordid><startdate>20190913</startdate><enddate>20190913</enddate><creator>Zanotelli, Matthew R.</creator><creator>Rahman-Zaman, Aniqua</creator><creator>VanderBurgh, Jacob A.</creator><creator>Taufalele, Paul V.</creator><creator>Jain, Aadhar</creator><creator>Erickson, David</creator><creator>Bordeleau, Francois</creator><creator>Reinhart-King, Cynthia A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5114-1757</orcidid><orcidid>https://orcid.org/0000-0001-6959-3914</orcidid><orcidid>https://orcid.org/0000-0001-8547-6451</orcidid></search><sort><creationdate>20190913</creationdate><title>Energetic costs regulated by cell mechanics and confinement are predictive of migration path during decision-making</title><author>Zanotelli, Matthew R. ; Rahman-Zaman, Aniqua ; VanderBurgh, Jacob A. ; Taufalele, Paul V. ; Jain, Aadhar ; Erickson, David ; Bordeleau, Francois ; Reinhart-King, Cynthia A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-edf73dcc4883ea226af3e5d00472f9598bceb9c5a36185fbe89413b4898aebc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13</topic><topic>14</topic><topic>14/19</topic><topic>14/3</topic><topic>14/63</topic><topic>142/126</topic><topic>631/80/84/750</topic><topic>639/166/985</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Biomedical Engineering</topic><topic>Cancer</topic><topic>Caveolin 1 - genetics</topic><topic>Caveolin 1 - metabolism</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Line, Tumor</topic><topic>Cell migration</topic><topic>Cell Movement - genetics</topic><topic>Cell Movement - physiology</topic><topic>Confined spaces</topic><topic>Confinement</topic><topic>Cost assessments</topic><topic>Costs</topic><topic>Decision Making</topic><topic>Decision theory</topic><topic>Glucose - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Metabolism</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Phase-Contrast</topic><topic>multidisciplinary</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zanotelli, Matthew R.</creatorcontrib><creatorcontrib>Rahman-Zaman, Aniqua</creatorcontrib><creatorcontrib>VanderBurgh, Jacob A.</creatorcontrib><creatorcontrib>Taufalele, Paul V.</creatorcontrib><creatorcontrib>Jain, Aadhar</creatorcontrib><creatorcontrib>Erickson, David</creatorcontrib><creatorcontrib>Bordeleau, Francois</creatorcontrib><creatorcontrib>Reinhart-King, Cynthia A.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zanotelli, Matthew R.</au><au>Rahman-Zaman, Aniqua</au><au>VanderBurgh, Jacob A.</au><au>Taufalele, Paul V.</au><au>Jain, Aadhar</au><au>Erickson, David</au><au>Bordeleau, Francois</au><au>Reinhart-King, Cynthia A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energetic costs regulated by cell mechanics and confinement are predictive of migration path during decision-making</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2019-09-13</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>4185</spage><epage>12</epage><pages>4185-12</pages><artnum>4185</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Cell migration during the invasion-metastasis cascade requires cancer cells to navigate a spatially complex microenvironment that presents directional choices to migrating cells. Here, we investigate cellular energetics during migration decision-making in confined spaces. Theoretical and experimental data show that energetic costs for migration through confined spaces are mediated by a balance between cell and matrix compliance as well as the degree of spatial confinement to direct decision-making. Energetic costs, driven by the cellular work needed to generate force for matrix displacement, increase with increasing cell stiffness, matrix stiffness, and degree of spatial confinement, limiting migration. By assessing energetic costs between possible migration paths, we can predict the probability of migration choice. Our findings indicate that motility in confined spaces imposes high energetic demands on migrating cells, and cells migrate in the direction of least confinement to minimize energetic costs. Therefore, therapeutically targeting metabolism may limit cancer cell migration and metastasis. Migrating cells tune their energy utilization in response to their microenvironment, but how cellular energetics direct navigation remains unclear. Here, the authors report that energetic costs for motility, regulated by cell mechanics and confinement, predict the probability of migration choice.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31519914</pmid><doi>10.1038/s41467-019-12155-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5114-1757</orcidid><orcidid>https://orcid.org/0000-0001-6959-3914</orcidid><orcidid>https://orcid.org/0000-0001-8547-6451</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2019-09, Vol.10 (1), p.4185-12, Article 4185
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d89947d85d604810a3c24366f9f1743c
source PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - Connect here FIRST to enable access; Springer Nature - nature.com Journals - Fully Open Access
subjects 13
14
14/19
14/3
14/63
142/126
631/80/84/750
639/166/985
Adenosine Diphosphate - metabolism
Adenosine Triphosphate - metabolism
Biomedical Engineering
Cancer
Caveolin 1 - genetics
Caveolin 1 - metabolism
Cell adhesion & migration
Cell Line, Tumor
Cell migration
Cell Movement - genetics
Cell Movement - physiology
Confined spaces
Confinement
Cost assessments
Costs
Decision Making
Decision theory
Glucose - metabolism
Humanities and Social Sciences
Humans
Metabolism
Metastases
Metastasis
Microscopy, Atomic Force
Microscopy, Confocal
Microscopy, Phase-Contrast
multidisciplinary
RNA, Small Interfering - genetics
RNA, Small Interfering - metabolism
Science
Science (multidisciplinary)
Stiffness
title Energetic costs regulated by cell mechanics and confinement are predictive of migration path during decision-making
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energetic%20costs%20regulated%20by%20cell%20mechanics%20and%20confinement%20are%20predictive%20of%20migration%20path%20during%20decision-making&rft.jtitle=Nature%20communications&rft.au=Zanotelli,%20Matthew%20R.&rft.date=2019-09-13&rft.volume=10&rft.issue=1&rft.spage=4185&rft.epage=12&rft.pages=4185-12&rft.artnum=4185&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-019-12155-z&rft_dat=%3Cproquest_doaj_%3E2290903565%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-edf73dcc4883ea226af3e5d00472f9598bceb9c5a36185fbe89413b4898aebc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2290064416&rft_id=info:pmid/31519914&rfr_iscdi=true