Loading…
Enhanced nitrogen removal for low C/N wastewater via preventing futile carbon oxidation and augmenting anammox
•Avoiding futile oxidation of COD by the separating of carbon and nitrogen.•Low DO in aerobic strategy improves the utilization of carbon sources.•Good performance in low C/N influent with ED and Anammox.•Insight into the biological separation of C and N in SDR-AOA was provided. Efficient carbon use...
Saved in:
Published in: | Water research X 2024-12, Vol.25, p.100253, Article 100253 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | •Avoiding futile oxidation of COD by the separating of carbon and nitrogen.•Low DO in aerobic strategy improves the utilization of carbon sources.•Good performance in low C/N influent with ED and Anammox.•Insight into the biological separation of C and N in SDR-AOA was provided.
Efficient carbon use is crucial for biological nitrogen removal. Traditional aerobic processes can waste carbon sources, exacerbating carbon deficiency. This study explores an anaerobic/oxic/anoxic system with sludge double recirculation to improve nitrogen removal in low C/N wastewater. This system integrated aerobic nitrification after the carbon intracellular storage, separating carbon and nitrogen by denitrifying glycogen-accumulating organisms (DGAOs) with endogenous partial denitrification and Anammox within the anoxic units. A significant efficiency of 91.02±7.01% chemical oxygen demand (COD) was converted into intracellular carbon in anaerobic units, significantly reducing carbon futile oxidation in the aerobic units by effectively separating COD from ammonia. Intracellular storage of carbon sources and microbial adaptation to carbon scarcity prevent futile oxidation of COD in the aerobic units even with short-term high dissolved oxygen (DO), thereby enhancing nitrogen removal under anoxic conditions with sufficient intracellular carbon source. The microbial analysis identified Candidatus Brocadia as the dominant anammox bacteria, in combination with the activity of DGAOs and other related microbial communities, accounting for 37.0% of the TN removal. Consequently, the system demonstrated remarkable nitrogen removal efficiencies, achieving 81.3±3.3% for total nitrogen (TN) and 98.5±0.9% for ammonia nitrogen while maintaining an effluent COD concentration of 17.2±9.1 mg/L, treating the low C/N of 4.18 in the influent wastewater. The findings in this study provide a sustainable and energy-saving technique for conventional WWTPs to meet strict discharge standards by avoiding futile oxidation of COD and encouraging anammox contributions.
[Display omitted] |
---|---|
ISSN: | 2589-9147 2589-9147 |
DOI: | 10.1016/j.wroa.2024.100253 |