Loading…

Potential effects of biochar application on mitigating the drought stress implications on wheat (Triticum aestivum L.) under various growth stages

Drought is the main abiotic stress that severely reduces wheat yield across the globe. To cope up this situation, use of organic amendments is the best option. Biochar is an organic soil amendment that is used to improve soil carbon, organic contents, improve water holding capacity of soil, enhance...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Saudi Chemical Society 2020-12, Vol.24 (12), p.974-981
Main Authors: Haider, Imran, Raza, Muhammad Aown Sammar, Iqbal, Rashid, Aslam, Muhammad Usman, Habib-ur-Rahman, Muhammad, Raja, Shameem, Khan, Muhammad Tahir, Aslam, Muhammad Mahran, Waqas, Muhammad, Ahmad, Salman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Drought is the main abiotic stress that severely reduces wheat yield across the globe. To cope up this situation, use of organic amendments is the best option. Biochar is an organic soil amendment that is used to improve soil carbon, organic contents, improve water holding capacity of soil, enhance soil fertility and maintain desired soil. Present study was carried out under semi-arid climatic conditions to mitigate the adverse effects of drought at critical wheat growth stages i.e., tillering (DTS), flowering (DFS) and grain filling stage (DGFS) by using three biochar treatments viz. B0 = Control, B1 = 27.88 g kg−1 and B2 = 37.18 g kg−1. Results revealed that drought stress negatively affected the growth and yield attributes of wheat at all critical growth stages, while, grain filling stage was found the most sensitive stage resulted severe yield reduction. However, biochar application significantly mitigated the detrimental effects of drought by improving number of fertile tillers (19.50%), spike length (6.52%), number of grains per spike (3.07%), thousand grain weight (6.42%), biological (9.43%) and economic yield (13.92%) as compared to control treatment. Moreover, biochar significantly improved water use efficiency and physiological attributes of drought stressed wheat. Principal component analysis linked different scales of study and demonstrated the potential of physio-biochemical traits to explain the wheat yield variations under drought condition with response to biochar application. In crux, biochar application (37.18 g kg−1) can be used as an effective stratagem to achieve improved wheat grain yield through mitigating the adverse effects of drought stress.
ISSN:1319-6103
DOI:10.1016/j.jscs.2020.10.005