Loading…

Classification of tic disorders based on functional MRI by machine learning: a study protocol

IntroductionTic disorder (TD) is a common neurodevelopmental disorder in children, and it can be categorised into three subtypes: provisional tic disorder (PTD), chronic motor or vocal TD (CMT or CVT), and Tourette syndrome (TS). An early diagnostic classification among these subtypes is not possibl...

Full description

Saved in:
Bibliographic Details
Published in:BMJ open 2022-05, Vol.12 (5), p.e047343-e047343
Main Authors: Wang, Fang, Wen, Fang, Liu, Jingran, Yan, Junjuan, Yu, Liping, Li, Ying, Cui, Yonghua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-b539t-d93958b399b535c9af13ae45072ef005e03335434c29c7da3727262d94e6a6ed3
cites cdi_FETCH-LOGICAL-b539t-d93958b399b535c9af13ae45072ef005e03335434c29c7da3727262d94e6a6ed3
container_end_page e047343
container_issue 5
container_start_page e047343
container_title BMJ open
container_volume 12
creator Wang, Fang
Wen, Fang
Liu, Jingran
Yan, Junjuan
Yu, Liping
Li, Ying
Cui, Yonghua
description IntroductionTic disorder (TD) is a common neurodevelopmental disorder in children, and it can be categorised into three subtypes: provisional tic disorder (PTD), chronic motor or vocal TD (CMT or CVT), and Tourette syndrome (TS). An early diagnostic classification among these subtypes is not possible based on a new-onset tic symptom. Machine learning tools have been widely used for early diagnostic classification based on functional MRI (fMRI). However, few machine learning models have been built for the diagnostic classification of patients with TD. Therefore, in the present study, we will provide a study protocol that uses the machine learning model to make early classifications of the three different types of TD.Methods and analysisWe planned to recruit 200 children aged 6–9 years with new-onset tic symptoms and 100 age-matched and sex-matched healthy controls under resting-state MRI scanning. Based on the neuroimaging data of resting-state fMRI, the support vector machine (SVM) model will be built. We planned to construct an SVM model based on functional connectivity for the early diagnosis classification of TD subtypes (including PTD, CMT/CVT, TS).Ethics and disseminationThis study was approved by the ethics committee of Beijing Children’s Hospital. The trial results will be submitted to peer-reviewed journals for publication.Trial registration numberChiCTR2000033257.
doi_str_mv 10.1136/bmjopen-2020-047343
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_d9bec1638bad49bcb8fec296fece8781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d9bec1638bad49bcb8fec296fece8781</doaj_id><sourcerecordid>3116893393</sourcerecordid><originalsourceid>FETCH-LOGICAL-b539t-d93958b399b535c9af13ae45072ef005e03335434c29c7da3727262d94e6a6ed3</originalsourceid><addsrcrecordid>eNp9kl1rFDEUhoMotqz9BYIEvPFm2nzPxAtBFq0LFUH0UkImObPNMjNZk5nC_nuzzlpbLwwhX-c9T75ehF5SckkpV1ftsIt7GCtGGKmIqLngT9A5I0JUikj59MH4DF3kvCOlCKmlZM_RGZeyroVS5-jHurc5hy44O4U44tjhKTjsQ47JQ8q4tRk8LpFuHt1RYnv8-esGtwc8WHcbRsA92DSGcfsWW5yn2R_wPsUputi_QM8622e4OPUr9P3jh2_rT9XNl-vN-v1N1Uqup8prrmXTcq3LXDptO8otCElqBh0hEgjnXAouHNOu9pbXrGaKeS1AWQWer9Bm4fpod2afwmDTwUQbzO-FmLbGpnKvHozXLTiqeNNaL3Tr2qaDglWlhaZuaGG9W1j7uR3AOxinZPtH0MeRMdyabbwzmlKhZV0Ab06AFH_OkCczhOyg7-0Icc6GKSWlIkVepK__ke7inMoTZ8MpVY3mvNQV4ovKpZhzgu7-MJSYoxvMyQ3m6AazuKFkvXp4j_ucP39fBFeLoGT_3fd_yF_9lsGO</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116893393</pqid></control><display><type>article</type><title>Classification of tic disorders based on functional MRI by machine learning: a study protocol</title><source>Publicly Available Content Database</source><source>BMJ Publishing</source><source>BMJ Journals (Open Access)</source><source>PubMed Central</source><creator>Wang, Fang ; Wen, Fang ; Liu, Jingran ; Yan, Junjuan ; Yu, Liping ; Li, Ying ; Cui, Yonghua</creator><creatorcontrib>Wang, Fang ; Wen, Fang ; Liu, Jingran ; Yan, Junjuan ; Yu, Liping ; Li, Ying ; Cui, Yonghua</creatorcontrib><description>IntroductionTic disorder (TD) is a common neurodevelopmental disorder in children, and it can be categorised into three subtypes: provisional tic disorder (PTD), chronic motor or vocal TD (CMT or CVT), and Tourette syndrome (TS). An early diagnostic classification among these subtypes is not possible based on a new-onset tic symptom. Machine learning tools have been widely used for early diagnostic classification based on functional MRI (fMRI). However, few machine learning models have been built for the diagnostic classification of patients with TD. Therefore, in the present study, we will provide a study protocol that uses the machine learning model to make early classifications of the three different types of TD.Methods and analysisWe planned to recruit 200 children aged 6–9 years with new-onset tic symptoms and 100 age-matched and sex-matched healthy controls under resting-state MRI scanning. Based on the neuroimaging data of resting-state fMRI, the support vector machine (SVM) model will be built. We planned to construct an SVM model based on functional connectivity for the early diagnosis classification of TD subtypes (including PTD, CMT/CVT, TS).Ethics and disseminationThis study was approved by the ethics committee of Beijing Children’s Hospital. The trial results will be submitted to peer-reviewed journals for publication.Trial registration numberChiCTR2000033257.</description><identifier>ISSN: 2044-6055</identifier><identifier>EISSN: 2044-6055</identifier><identifier>DOI: 10.1136/bmjopen-2020-047343</identifier><identifier>PMID: 35577466</identifier><language>eng</language><publisher>England: British Medical Journal Publishing Group</publisher><subject>Accuracy ; Child &amp; adolescent psychiatry ; Classification ; Hospitals ; Machine learning ; Medical imaging ; Mental disorders ; Neuroimaging ; Paediatrics ; Protocols &amp; guidelines ; PSYCHIATRY ; Radiomics ; Schizophrenia ; Support vector machines ; Teenagers ; Tourette syndrome</subject><ispartof>BMJ open, 2022-05, Vol.12 (5), p.e047343-e047343</ispartof><rights>Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.</rights><rights>2022 Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b539t-d93958b399b535c9af13ae45072ef005e03335434c29c7da3727262d94e6a6ed3</citedby><cites>FETCH-LOGICAL-b539t-d93958b399b535c9af13ae45072ef005e03335434c29c7da3727262d94e6a6ed3</cites><orcidid>0000-0002-8244-5884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3116893393/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3116893393?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3194,25753,27924,27925,37012,37013,44590,53791,53793,55341,55350,74998,77468,77469,77532,77558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35577466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Wen, Fang</creatorcontrib><creatorcontrib>Liu, Jingran</creatorcontrib><creatorcontrib>Yan, Junjuan</creatorcontrib><creatorcontrib>Yu, Liping</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Cui, Yonghua</creatorcontrib><title>Classification of tic disorders based on functional MRI by machine learning: a study protocol</title><title>BMJ open</title><addtitle>BMJ Open</addtitle><addtitle>BMJ Open</addtitle><description>IntroductionTic disorder (TD) is a common neurodevelopmental disorder in children, and it can be categorised into three subtypes: provisional tic disorder (PTD), chronic motor or vocal TD (CMT or CVT), and Tourette syndrome (TS). An early diagnostic classification among these subtypes is not possible based on a new-onset tic symptom. Machine learning tools have been widely used for early diagnostic classification based on functional MRI (fMRI). However, few machine learning models have been built for the diagnostic classification of patients with TD. Therefore, in the present study, we will provide a study protocol that uses the machine learning model to make early classifications of the three different types of TD.Methods and analysisWe planned to recruit 200 children aged 6–9 years with new-onset tic symptoms and 100 age-matched and sex-matched healthy controls under resting-state MRI scanning. Based on the neuroimaging data of resting-state fMRI, the support vector machine (SVM) model will be built. We planned to construct an SVM model based on functional connectivity for the early diagnosis classification of TD subtypes (including PTD, CMT/CVT, TS).Ethics and disseminationThis study was approved by the ethics committee of Beijing Children’s Hospital. The trial results will be submitted to peer-reviewed journals for publication.Trial registration numberChiCTR2000033257.</description><subject>Accuracy</subject><subject>Child &amp; adolescent psychiatry</subject><subject>Classification</subject><subject>Hospitals</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Mental disorders</subject><subject>Neuroimaging</subject><subject>Paediatrics</subject><subject>Protocols &amp; guidelines</subject><subject>PSYCHIATRY</subject><subject>Radiomics</subject><subject>Schizophrenia</subject><subject>Support vector machines</subject><subject>Teenagers</subject><subject>Tourette syndrome</subject><issn>2044-6055</issn><issn>2044-6055</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>9YT</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kl1rFDEUhoMotqz9BYIEvPFm2nzPxAtBFq0LFUH0UkImObPNMjNZk5nC_nuzzlpbLwwhX-c9T75ehF5SckkpV1ftsIt7GCtGGKmIqLngT9A5I0JUikj59MH4DF3kvCOlCKmlZM_RGZeyroVS5-jHurc5hy44O4U44tjhKTjsQ47JQ8q4tRk8LpFuHt1RYnv8-esGtwc8WHcbRsA92DSGcfsWW5yn2R_wPsUputi_QM8622e4OPUr9P3jh2_rT9XNl-vN-v1N1Uqup8prrmXTcq3LXDptO8otCElqBh0hEgjnXAouHNOu9pbXrGaKeS1AWQWer9Bm4fpod2afwmDTwUQbzO-FmLbGpnKvHozXLTiqeNNaL3Tr2qaDglWlhaZuaGG9W1j7uR3AOxinZPtH0MeRMdyabbwzmlKhZV0Ab06AFH_OkCczhOyg7-0Icc6GKSWlIkVepK__ke7inMoTZ8MpVY3mvNQV4ovKpZhzgu7-MJSYoxvMyQ3m6AazuKFkvXp4j_ucP39fBFeLoGT_3fd_yF_9lsGO</recordid><startdate>20220516</startdate><enddate>20220516</enddate><creator>Wang, Fang</creator><creator>Wen, Fang</creator><creator>Liu, Jingran</creator><creator>Yan, Junjuan</creator><creator>Yu, Liping</creator><creator>Li, Ying</creator><creator>Cui, Yonghua</creator><general>British Medical Journal Publishing Group</general><general>BMJ Publishing Group LTD</general><general>BMJ Publishing Group</general><scope>9YT</scope><scope>ACMMV</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BTHHO</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8244-5884</orcidid></search><sort><creationdate>20220516</creationdate><title>Classification of tic disorders based on functional MRI by machine learning: a study protocol</title><author>Wang, Fang ; Wen, Fang ; Liu, Jingran ; Yan, Junjuan ; Yu, Liping ; Li, Ying ; Cui, Yonghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b539t-d93958b399b535c9af13ae45072ef005e03335434c29c7da3727262d94e6a6ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Child &amp; adolescent psychiatry</topic><topic>Classification</topic><topic>Hospitals</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Mental disorders</topic><topic>Neuroimaging</topic><topic>Paediatrics</topic><topic>Protocols &amp; guidelines</topic><topic>PSYCHIATRY</topic><topic>Radiomics</topic><topic>Schizophrenia</topic><topic>Support vector machines</topic><topic>Teenagers</topic><topic>Tourette syndrome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Wen, Fang</creatorcontrib><creatorcontrib>Liu, Jingran</creatorcontrib><creatorcontrib>Yan, Junjuan</creatorcontrib><creatorcontrib>Yu, Liping</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Cui, Yonghua</creatorcontrib><collection>BMJ Journals (Open Access)</collection><collection>BMJ Journals:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>BMJ Journals</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Consumer Health Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Journals (ProQuest)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>BMJ open</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Fang</au><au>Wen, Fang</au><au>Liu, Jingran</au><au>Yan, Junjuan</au><au>Yu, Liping</au><au>Li, Ying</au><au>Cui, Yonghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of tic disorders based on functional MRI by machine learning: a study protocol</atitle><jtitle>BMJ open</jtitle><stitle>BMJ Open</stitle><addtitle>BMJ Open</addtitle><date>2022-05-16</date><risdate>2022</risdate><volume>12</volume><issue>5</issue><spage>e047343</spage><epage>e047343</epage><pages>e047343-e047343</pages><issn>2044-6055</issn><eissn>2044-6055</eissn><abstract>IntroductionTic disorder (TD) is a common neurodevelopmental disorder in children, and it can be categorised into three subtypes: provisional tic disorder (PTD), chronic motor or vocal TD (CMT or CVT), and Tourette syndrome (TS). An early diagnostic classification among these subtypes is not possible based on a new-onset tic symptom. Machine learning tools have been widely used for early diagnostic classification based on functional MRI (fMRI). However, few machine learning models have been built for the diagnostic classification of patients with TD. Therefore, in the present study, we will provide a study protocol that uses the machine learning model to make early classifications of the three different types of TD.Methods and analysisWe planned to recruit 200 children aged 6–9 years with new-onset tic symptoms and 100 age-matched and sex-matched healthy controls under resting-state MRI scanning. Based on the neuroimaging data of resting-state fMRI, the support vector machine (SVM) model will be built. We planned to construct an SVM model based on functional connectivity for the early diagnosis classification of TD subtypes (including PTD, CMT/CVT, TS).Ethics and disseminationThis study was approved by the ethics committee of Beijing Children’s Hospital. The trial results will be submitted to peer-reviewed journals for publication.Trial registration numberChiCTR2000033257.</abstract><cop>England</cop><pub>British Medical Journal Publishing Group</pub><pmid>35577466</pmid><doi>10.1136/bmjopen-2020-047343</doi><orcidid>https://orcid.org/0000-0002-8244-5884</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2044-6055
ispartof BMJ open, 2022-05, Vol.12 (5), p.e047343-e047343
issn 2044-6055
2044-6055
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_d9bec1638bad49bcb8fec296fece8781
source Publicly Available Content Database; BMJ Publishing; BMJ Journals (Open Access); PubMed Central
subjects Accuracy
Child & adolescent psychiatry
Classification
Hospitals
Machine learning
Medical imaging
Mental disorders
Neuroimaging
Paediatrics
Protocols & guidelines
PSYCHIATRY
Radiomics
Schizophrenia
Support vector machines
Teenagers
Tourette syndrome
title Classification of tic disorders based on functional MRI by machine learning: a study protocol
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20tic%20disorders%20based%20on%20functional%20MRI%20by%20machine%20learning:%20a%20study%20protocol&rft.jtitle=BMJ%20open&rft.au=Wang,%20Fang&rft.date=2022-05-16&rft.volume=12&rft.issue=5&rft.spage=e047343&rft.epage=e047343&rft.pages=e047343-e047343&rft.issn=2044-6055&rft.eissn=2044-6055&rft_id=info:doi/10.1136/bmjopen-2020-047343&rft_dat=%3Cproquest_doaj_%3E3116893393%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b539t-d93958b399b535c9af13ae45072ef005e03335434c29c7da3727262d94e6a6ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3116893393&rft_id=info:pmid/35577466&rfr_iscdi=true