Loading…

The structure of IR divergences in celestial gluon amplitudes

A bstract The all-loop resummation of SU( N ) gauge theory amplitudes is known to factorize into an IR-divergent (soft and collinear) factor and a finite (hard) piece. The divergent factor is universal, whereas the hard function is a process-dependent quantity. We prove that this factorization persi...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2021-06, Vol.2021 (6), p.1-27, Article 171
Main Authors: González, Hernán A., Rojas, Francisco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A bstract The all-loop resummation of SU( N ) gauge theory amplitudes is known to factorize into an IR-divergent (soft and collinear) factor and a finite (hard) piece. The divergent factor is universal, whereas the hard function is a process-dependent quantity. We prove that this factorization persists for the corresponding celestial amplitudes. Moreover, the soft/collinear factor becomes a scalar correlator of the product of renormalized Wilson lines defined in terms of celestial data. Their effect on the hard amplitude is a shift in the scaling dimensions by an infinite amount, proportional to the cusp anomalous dimension. This leads us to conclude that the celestial-IR-safe gluon amplitude corresponds to a expectation value of operators dressed with Wilson line primaries . These results hold for finite N . In the large N limit, we show that the soft/collinear correlator can be described in terms of vertex operators in a Coulomb gas of colored scalar primaries with nearest neighbor interactions. In the particular cases of four and five gluons in planar N = 4 SYM theory, where the hard factor is known to exponentiate, we establish that the Mellin transform converges in the UV thanks to the fact that the cusp anomalous dimension is a positive quantity. In other words, the very existence of the full celestial amplitude is owed to the positivity of the cusp anomalous dimension.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP06(2021)171