Loading…
Imaging Domain Seismic Denoising Based on Conditional Generative Adversarial Networks (CGANs)
A high-resolution seismic image is the key factor for helping geophysicists and geologists to recognize the geological structures below the subsurface. More and more complex geology has challenged traditional techniques and resulted in a need for more powerful denoising methodologies. The deep learn...
Saved in:
Published in: | Energies (Basel) 2022-09, Vol.15 (18), p.6569 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c400t-9a7814a14501dac381e131c91d78fba37d46c534e9bafb916f64b76747bbd5783 |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-9a7814a14501dac381e131c91d78fba37d46c534e9bafb916f64b76747bbd5783 |
container_end_page | |
container_issue | 18 |
container_start_page | 6569 |
container_title | Energies (Basel) |
container_volume | 15 |
creator | Zhang, Hao Wang, Wenlei |
description | A high-resolution seismic image is the key factor for helping geophysicists and geologists to recognize the geological structures below the subsurface. More and more complex geology has challenged traditional techniques and resulted in a need for more powerful denoising methodologies. The deep learning technique has shown its effectiveness in many different types of tasks. In this work, we used a conditional generative adversarial network (CGAN), which is a special type of deep neural network, to conduct the seismic image denoising process. We considered the denoising task as an image-to-image translation problem, which transfers a raw seismic image with multiple types of noise into a reflectivity-like image without noise. We used several seismic models with complex geology to train the CGAN. In this experiment, the CGAN’s performance was promising. The trained CGAN could maintain the structure of the image undistorted while suppressing multiple types of noise. |
doi_str_mv | 10.3390/en15186569 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_dbdd18f729f34d51ae3394627685cff8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745599941</galeid><doaj_id>oai_doaj_org_article_dbdd18f729f34d51ae3394627685cff8</doaj_id><sourcerecordid>A745599941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-9a7814a14501dac381e131c91d78fba37d46c534e9bafb916f64b76747bbd5783</originalsourceid><addsrcrecordid>eNpNUU1vEzEQXSGQqNpe-AUrcQGkFM_6a30MKaSRqnIAjsiatceRQ2IXe1vEv8chCJg5zOjNvKf56LoXwK44N-wtJZAwKqnMk-4MjFELYJo__S9_3l3WumPNOAfO-Vn3dXPAbUzb_jofMKb-E8V6iK6_ppRjPRbeYSXf59SvcvJxjjnhvl9TooJzfKR-6R-pVCyxwXc0_8jlW-1frdbLu_r6onsWcF_p8k887758eP95dbO4_bjerJa3CycYmxcG9QgCQUgGHh0fgYCDM-D1GCbk2gvlJBdkJgyTARWUmLTSQk-Tl3rk593mpOsz7ux9iQcsP23GaH8DuWwtljm6PVk_eQ9j0IMJXHgJSO12Qg1ajdKFcNR6edK6L_n7A9XZ7vJDaUtXO2hQkrNh4K3r6tS1xSYaU8hzQdfcUztfThRiw5daSGmMEdAIb04EV3KthcLfMYHZ4_vsv_fxX1LaiqE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716530223</pqid></control><display><type>article</type><title>Imaging Domain Seismic Denoising Based on Conditional Generative Adversarial Networks (CGANs)</title><source>Publicly Available Content Database</source><creator>Zhang, Hao ; Wang, Wenlei</creator><creatorcontrib>Zhang, Hao ; Wang, Wenlei</creatorcontrib><description>A high-resolution seismic image is the key factor for helping geophysicists and geologists to recognize the geological structures below the subsurface. More and more complex geology has challenged traditional techniques and resulted in a need for more powerful denoising methodologies. The deep learning technique has shown its effectiveness in many different types of tasks. In this work, we used a conditional generative adversarial network (CGAN), which is a special type of deep neural network, to conduct the seismic image denoising process. We considered the denoising task as an image-to-image translation problem, which transfers a raw seismic image with multiple types of noise into a reflectivity-like image without noise. We used several seismic models with complex geology to train the CGAN. In this experiment, the CGAN’s performance was promising. The trained CGAN could maintain the structure of the image undistorted while suppressing multiple types of noise.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en15186569</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Classification ; deblur generative adversarial networks ; Deep learning ; denoising ; Geological structures ; Geologists ; Geology ; Image processing ; Land surveys ; Machine learning ; Methods ; Neural networks ; Noise ; Noise reduction ; Object recognition (Computers) ; Pattern recognition ; seismic imaging ; Seismic tomography</subject><ispartof>Energies (Basel), 2022-09, Vol.15 (18), p.6569</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-9a7814a14501dac381e131c91d78fba37d46c534e9bafb916f64b76747bbd5783</citedby><cites>FETCH-LOGICAL-c400t-9a7814a14501dac381e131c91d78fba37d46c534e9bafb916f64b76747bbd5783</cites><orcidid>0000-0001-6973-1643 ; 0000-0002-6280-1888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716530223/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716530223?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Wang, Wenlei</creatorcontrib><title>Imaging Domain Seismic Denoising Based on Conditional Generative Adversarial Networks (CGANs)</title><title>Energies (Basel)</title><description>A high-resolution seismic image is the key factor for helping geophysicists and geologists to recognize the geological structures below the subsurface. More and more complex geology has challenged traditional techniques and resulted in a need for more powerful denoising methodologies. The deep learning technique has shown its effectiveness in many different types of tasks. In this work, we used a conditional generative adversarial network (CGAN), which is a special type of deep neural network, to conduct the seismic image denoising process. We considered the denoising task as an image-to-image translation problem, which transfers a raw seismic image with multiple types of noise into a reflectivity-like image without noise. We used several seismic models with complex geology to train the CGAN. In this experiment, the CGAN’s performance was promising. The trained CGAN could maintain the structure of the image undistorted while suppressing multiple types of noise.</description><subject>Classification</subject><subject>deblur generative adversarial networks</subject><subject>Deep learning</subject><subject>denoising</subject><subject>Geological structures</subject><subject>Geologists</subject><subject>Geology</subject><subject>Image processing</subject><subject>Land surveys</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Object recognition (Computers)</subject><subject>Pattern recognition</subject><subject>seismic imaging</subject><subject>Seismic tomography</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1vEzEQXSGQqNpe-AUrcQGkFM_6a30MKaSRqnIAjsiatceRQ2IXe1vEv8chCJg5zOjNvKf56LoXwK44N-wtJZAwKqnMk-4MjFELYJo__S9_3l3WumPNOAfO-Vn3dXPAbUzb_jofMKb-E8V6iK6_ppRjPRbeYSXf59SvcvJxjjnhvl9TooJzfKR-6R-pVCyxwXc0_8jlW-1frdbLu_r6onsWcF_p8k887758eP95dbO4_bjerJa3CycYmxcG9QgCQUgGHh0fgYCDM-D1GCbk2gvlJBdkJgyTARWUmLTSQk-Tl3rk593mpOsz7ux9iQcsP23GaH8DuWwtljm6PVk_eQ9j0IMJXHgJSO12Qg1ajdKFcNR6edK6L_n7A9XZ7vJDaUtXO2hQkrNh4K3r6tS1xSYaU8hzQdfcUztfThRiw5daSGmMEdAIb04EV3KthcLfMYHZ4_vsv_fxX1LaiqE</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Zhang, Hao</creator><creator>Wang, Wenlei</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6973-1643</orcidid><orcidid>https://orcid.org/0000-0002-6280-1888</orcidid></search><sort><creationdate>20220901</creationdate><title>Imaging Domain Seismic Denoising Based on Conditional Generative Adversarial Networks (CGANs)</title><author>Zhang, Hao ; Wang, Wenlei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-9a7814a14501dac381e131c91d78fba37d46c534e9bafb916f64b76747bbd5783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classification</topic><topic>deblur generative adversarial networks</topic><topic>Deep learning</topic><topic>denoising</topic><topic>Geological structures</topic><topic>Geologists</topic><topic>Geology</topic><topic>Image processing</topic><topic>Land surveys</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Object recognition (Computers)</topic><topic>Pattern recognition</topic><topic>seismic imaging</topic><topic>Seismic tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Wang, Wenlei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hao</au><au>Wang, Wenlei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging Domain Seismic Denoising Based on Conditional Generative Adversarial Networks (CGANs)</atitle><jtitle>Energies (Basel)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>15</volume><issue>18</issue><spage>6569</spage><pages>6569-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>A high-resolution seismic image is the key factor for helping geophysicists and geologists to recognize the geological structures below the subsurface. More and more complex geology has challenged traditional techniques and resulted in a need for more powerful denoising methodologies. The deep learning technique has shown its effectiveness in many different types of tasks. In this work, we used a conditional generative adversarial network (CGAN), which is a special type of deep neural network, to conduct the seismic image denoising process. We considered the denoising task as an image-to-image translation problem, which transfers a raw seismic image with multiple types of noise into a reflectivity-like image without noise. We used several seismic models with complex geology to train the CGAN. In this experiment, the CGAN’s performance was promising. The trained CGAN could maintain the structure of the image undistorted while suppressing multiple types of noise.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en15186569</doi><orcidid>https://orcid.org/0000-0001-6973-1643</orcidid><orcidid>https://orcid.org/0000-0002-6280-1888</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2022-09, Vol.15 (18), p.6569 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_dbdd18f729f34d51ae3394627685cff8 |
source | Publicly Available Content Database |
subjects | Classification deblur generative adversarial networks Deep learning denoising Geological structures Geologists Geology Image processing Land surveys Machine learning Methods Neural networks Noise Noise reduction Object recognition (Computers) Pattern recognition seismic imaging Seismic tomography |
title | Imaging Domain Seismic Denoising Based on Conditional Generative Adversarial Networks (CGANs) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A15%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20Domain%20Seismic%20Denoising%20Based%20on%20Conditional%20Generative%20Adversarial%20Networks%20(CGANs)&rft.jtitle=Energies%20(Basel)&rft.au=Zhang,%20Hao&rft.date=2022-09-01&rft.volume=15&rft.issue=18&rft.spage=6569&rft.pages=6569-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en15186569&rft_dat=%3Cgale_doaj_%3EA745599941%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-9a7814a14501dac381e131c91d78fba37d46c534e9bafb916f64b76747bbd5783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716530223&rft_id=info:pmid/&rft_galeid=A745599941&rfr_iscdi=true |