Loading…

Imaging Domain Seismic Denoising Based on Conditional Generative Adversarial Networks (CGANs)

A high-resolution seismic image is the key factor for helping geophysicists and geologists to recognize the geological structures below the subsurface. More and more complex geology has challenged traditional techniques and resulted in a need for more powerful denoising methodologies. The deep learn...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2022-09, Vol.15 (18), p.6569
Main Authors: Zhang, Hao, Wang, Wenlei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-9a7814a14501dac381e131c91d78fba37d46c534e9bafb916f64b76747bbd5783
cites cdi_FETCH-LOGICAL-c400t-9a7814a14501dac381e131c91d78fba37d46c534e9bafb916f64b76747bbd5783
container_end_page
container_issue 18
container_start_page 6569
container_title Energies (Basel)
container_volume 15
creator Zhang, Hao
Wang, Wenlei
description A high-resolution seismic image is the key factor for helping geophysicists and geologists to recognize the geological structures below the subsurface. More and more complex geology has challenged traditional techniques and resulted in a need for more powerful denoising methodologies. The deep learning technique has shown its effectiveness in many different types of tasks. In this work, we used a conditional generative adversarial network (CGAN), which is a special type of deep neural network, to conduct the seismic image denoising process. We considered the denoising task as an image-to-image translation problem, which transfers a raw seismic image with multiple types of noise into a reflectivity-like image without noise. We used several seismic models with complex geology to train the CGAN. In this experiment, the CGAN’s performance was promising. The trained CGAN could maintain the structure of the image undistorted while suppressing multiple types of noise.
doi_str_mv 10.3390/en15186569
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_dbdd18f729f34d51ae3394627685cff8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745599941</galeid><doaj_id>oai_doaj_org_article_dbdd18f729f34d51ae3394627685cff8</doaj_id><sourcerecordid>A745599941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-9a7814a14501dac381e131c91d78fba37d46c534e9bafb916f64b76747bbd5783</originalsourceid><addsrcrecordid>eNpNUU1vEzEQXSGQqNpe-AUrcQGkFM_6a30MKaSRqnIAjsiatceRQ2IXe1vEv8chCJg5zOjNvKf56LoXwK44N-wtJZAwKqnMk-4MjFELYJo__S9_3l3WumPNOAfO-Vn3dXPAbUzb_jofMKb-E8V6iK6_ppRjPRbeYSXf59SvcvJxjjnhvl9TooJzfKR-6R-pVCyxwXc0_8jlW-1frdbLu_r6onsWcF_p8k887758eP95dbO4_bjerJa3CycYmxcG9QgCQUgGHh0fgYCDM-D1GCbk2gvlJBdkJgyTARWUmLTSQk-Tl3rk593mpOsz7ux9iQcsP23GaH8DuWwtljm6PVk_eQ9j0IMJXHgJSO12Qg1ajdKFcNR6edK6L_n7A9XZ7vJDaUtXO2hQkrNh4K3r6tS1xSYaU8hzQdfcUztfThRiw5daSGmMEdAIb04EV3KthcLfMYHZ4_vsv_fxX1LaiqE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716530223</pqid></control><display><type>article</type><title>Imaging Domain Seismic Denoising Based on Conditional Generative Adversarial Networks (CGANs)</title><source>Publicly Available Content Database</source><creator>Zhang, Hao ; Wang, Wenlei</creator><creatorcontrib>Zhang, Hao ; Wang, Wenlei</creatorcontrib><description>A high-resolution seismic image is the key factor for helping geophysicists and geologists to recognize the geological structures below the subsurface. More and more complex geology has challenged traditional techniques and resulted in a need for more powerful denoising methodologies. The deep learning technique has shown its effectiveness in many different types of tasks. In this work, we used a conditional generative adversarial network (CGAN), which is a special type of deep neural network, to conduct the seismic image denoising process. We considered the denoising task as an image-to-image translation problem, which transfers a raw seismic image with multiple types of noise into a reflectivity-like image without noise. We used several seismic models with complex geology to train the CGAN. In this experiment, the CGAN’s performance was promising. The trained CGAN could maintain the structure of the image undistorted while suppressing multiple types of noise.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en15186569</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Classification ; deblur generative adversarial networks ; Deep learning ; denoising ; Geological structures ; Geologists ; Geology ; Image processing ; Land surveys ; Machine learning ; Methods ; Neural networks ; Noise ; Noise reduction ; Object recognition (Computers) ; Pattern recognition ; seismic imaging ; Seismic tomography</subject><ispartof>Energies (Basel), 2022-09, Vol.15 (18), p.6569</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-9a7814a14501dac381e131c91d78fba37d46c534e9bafb916f64b76747bbd5783</citedby><cites>FETCH-LOGICAL-c400t-9a7814a14501dac381e131c91d78fba37d46c534e9bafb916f64b76747bbd5783</cites><orcidid>0000-0001-6973-1643 ; 0000-0002-6280-1888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716530223/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716530223?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Wang, Wenlei</creatorcontrib><title>Imaging Domain Seismic Denoising Based on Conditional Generative Adversarial Networks (CGANs)</title><title>Energies (Basel)</title><description>A high-resolution seismic image is the key factor for helping geophysicists and geologists to recognize the geological structures below the subsurface. More and more complex geology has challenged traditional techniques and resulted in a need for more powerful denoising methodologies. The deep learning technique has shown its effectiveness in many different types of tasks. In this work, we used a conditional generative adversarial network (CGAN), which is a special type of deep neural network, to conduct the seismic image denoising process. We considered the denoising task as an image-to-image translation problem, which transfers a raw seismic image with multiple types of noise into a reflectivity-like image without noise. We used several seismic models with complex geology to train the CGAN. In this experiment, the CGAN’s performance was promising. The trained CGAN could maintain the structure of the image undistorted while suppressing multiple types of noise.</description><subject>Classification</subject><subject>deblur generative adversarial networks</subject><subject>Deep learning</subject><subject>denoising</subject><subject>Geological structures</subject><subject>Geologists</subject><subject>Geology</subject><subject>Image processing</subject><subject>Land surveys</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Object recognition (Computers)</subject><subject>Pattern recognition</subject><subject>seismic imaging</subject><subject>Seismic tomography</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1vEzEQXSGQqNpe-AUrcQGkFM_6a30MKaSRqnIAjsiatceRQ2IXe1vEv8chCJg5zOjNvKf56LoXwK44N-wtJZAwKqnMk-4MjFELYJo__S9_3l3WumPNOAfO-Vn3dXPAbUzb_jofMKb-E8V6iK6_ppRjPRbeYSXf59SvcvJxjjnhvl9TooJzfKR-6R-pVCyxwXc0_8jlW-1frdbLu_r6onsWcF_p8k887758eP95dbO4_bjerJa3CycYmxcG9QgCQUgGHh0fgYCDM-D1GCbk2gvlJBdkJgyTARWUmLTSQk-Tl3rk593mpOsz7ux9iQcsP23GaH8DuWwtljm6PVk_eQ9j0IMJXHgJSO12Qg1ajdKFcNR6edK6L_n7A9XZ7vJDaUtXO2hQkrNh4K3r6tS1xSYaU8hzQdfcUztfThRiw5daSGmMEdAIb04EV3KthcLfMYHZ4_vsv_fxX1LaiqE</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Zhang, Hao</creator><creator>Wang, Wenlei</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6973-1643</orcidid><orcidid>https://orcid.org/0000-0002-6280-1888</orcidid></search><sort><creationdate>20220901</creationdate><title>Imaging Domain Seismic Denoising Based on Conditional Generative Adversarial Networks (CGANs)</title><author>Zhang, Hao ; Wang, Wenlei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-9a7814a14501dac381e131c91d78fba37d46c534e9bafb916f64b76747bbd5783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classification</topic><topic>deblur generative adversarial networks</topic><topic>Deep learning</topic><topic>denoising</topic><topic>Geological structures</topic><topic>Geologists</topic><topic>Geology</topic><topic>Image processing</topic><topic>Land surveys</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Object recognition (Computers)</topic><topic>Pattern recognition</topic><topic>seismic imaging</topic><topic>Seismic tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Wang, Wenlei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hao</au><au>Wang, Wenlei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging Domain Seismic Denoising Based on Conditional Generative Adversarial Networks (CGANs)</atitle><jtitle>Energies (Basel)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>15</volume><issue>18</issue><spage>6569</spage><pages>6569-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>A high-resolution seismic image is the key factor for helping geophysicists and geologists to recognize the geological structures below the subsurface. More and more complex geology has challenged traditional techniques and resulted in a need for more powerful denoising methodologies. The deep learning technique has shown its effectiveness in many different types of tasks. In this work, we used a conditional generative adversarial network (CGAN), which is a special type of deep neural network, to conduct the seismic image denoising process. We considered the denoising task as an image-to-image translation problem, which transfers a raw seismic image with multiple types of noise into a reflectivity-like image without noise. We used several seismic models with complex geology to train the CGAN. In this experiment, the CGAN’s performance was promising. The trained CGAN could maintain the structure of the image undistorted while suppressing multiple types of noise.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en15186569</doi><orcidid>https://orcid.org/0000-0001-6973-1643</orcidid><orcidid>https://orcid.org/0000-0002-6280-1888</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2022-09, Vol.15 (18), p.6569
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_dbdd18f729f34d51ae3394627685cff8
source Publicly Available Content Database
subjects Classification
deblur generative adversarial networks
Deep learning
denoising
Geological structures
Geologists
Geology
Image processing
Land surveys
Machine learning
Methods
Neural networks
Noise
Noise reduction
Object recognition (Computers)
Pattern recognition
seismic imaging
Seismic tomography
title Imaging Domain Seismic Denoising Based on Conditional Generative Adversarial Networks (CGANs)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A15%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20Domain%20Seismic%20Denoising%20Based%20on%20Conditional%20Generative%20Adversarial%20Networks%20(CGANs)&rft.jtitle=Energies%20(Basel)&rft.au=Zhang,%20Hao&rft.date=2022-09-01&rft.volume=15&rft.issue=18&rft.spage=6569&rft.pages=6569-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en15186569&rft_dat=%3Cgale_doaj_%3EA745599941%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-9a7814a14501dac381e131c91d78fba37d46c534e9bafb916f64b76747bbd5783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716530223&rft_id=info:pmid/&rft_galeid=A745599941&rfr_iscdi=true