Loading…
Inertial Extra-Gradient Method for Solving a Family of Strongly Pseudomonotone Equilibrium Problems in Real Hilbert Spaces with Application in Variational Inequality Problem
In this paper, we propose a new method, which is set up by incorporating an inertial step with the extragradient method for solving a strongly pseudomonotone equilibrium problems. This method had to comply with a strongly pseudomonotone property and a certain Lipschitz-type condition of a bifunction...
Saved in:
Published in: | Symmetry (Basel) 2020-04, Vol.12 (4), p.503 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we propose a new method, which is set up by incorporating an inertial step with the extragradient method for solving a strongly pseudomonotone equilibrium problems. This method had to comply with a strongly pseudomonotone property and a certain Lipschitz-type condition of a bifunction. A strong convergence result is provided under some mild conditions, and an iterative sequence is accomplished without previous knowledge of the Lipschitz-type constants of a cost bifunction. A sufficient explanation is that the method operates with a slow-moving stepsize sequence that converges to zero and non-summable. For numerical explanations, we analyze a well-known equilibrium model to support our well-established convergence result, and we can see that the proposed method seems to have a significant consistent improvement over the performance of the existing methods. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym12040503 |