Loading…

Effect of Accelerated High Temperature on Oxidation and Polymerization of Biodiesel from Vegetable Oils

Oxidation of biodiesel (BD) obtained from the decomposition of biomass can damage the fuel injection and engine parts during its use as a fuel. The excess heating of vegetable oils can also cause polymerization of the biodiesel. The extent of BD oxidation depends on its fatty acid composition. In th...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2018-12, Vol.11 (12), p.3514
Main Authors: Kim, Jae-Kon, Jeon, Cheol-Hwan, Lee, Hyung Won, Park, Young-Kwon, Min, Kyong-il, Hwang, In-ha, Kim, Young-Min
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Oxidation of biodiesel (BD) obtained from the decomposition of biomass can damage the fuel injection and engine parts during its use as a fuel. The excess heating of vegetable oils can also cause polymerization of the biodiesel. The extent of BD oxidation depends on its fatty acid composition. In this study, an accelerated oxidation test of BDs at 95 °C was investigated according to ASTM D 2274 by applying a long-term storage test for 16 weeks. The density, viscosity, and total acid number (TAN) of BDs increased because of the accelerated oxidation. Furthermore, the contents of unsaturated fatty acid methyl esters (FAMEs), C18:2 ME, and C18:3 ME in BDs decreased due to the accelerated oxidation. The 1H-nuclear magnetic resonance spectrum of BDs that were obtained from the accelerated high temperature oxidation at 180 °C for 72 h differed from that of fresh BDs. The mass spectrum obtained from the analysis of the model FAME, linoleic acid (C18:2) methyl ester, which was oxidized at high temperature, indicated the formation of dimers and epoxy dimers of linoleic acid (C18:2) methyl ester by a Diels-Alder reaction.
ISSN:1996-1073
1996-1073
DOI:10.3390/en11123514