Loading…

Finite key effects in satellite quantum key distribution

Global quantum communications will enable long-distance secure data transfer, networked distributed quantum information processing, and other entanglement-enabled technologies. Satellite quantum communication overcomes optical fibre range limitations, with the first realisations of satellite quantum...

Full description

Saved in:
Bibliographic Details
Published in:npj quantum information 2022-02, Vol.8 (1), p.1-11, Article 18
Main Authors: Sidhu, Jasminder S., Brougham, Thomas, McArthur, Duncan, Pousa, Roberto G., Oi, Daniel K. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Global quantum communications will enable long-distance secure data transfer, networked distributed quantum information processing, and other entanglement-enabled technologies. Satellite quantum communication overcomes optical fibre range limitations, with the first realisations of satellite quantum key distribution (SatQKD) being rapidly developed. However, limited transmission times between satellite and ground station severely constrains the amount of secret key due to finite-block size effects. Here, we analyse these effects and the implications for system design and operation, utilising published results from the Micius satellite to construct an empirically-derived channel and system model for a trusted-node downlink employing efficient Bennett-Brassard 1984 (BB84) weak coherent pulse decoy states with optimised parameters. We quantify practical SatQKD performance limits and examine the effects of link efficiency, background light, source quality, and overpass geometries to estimate long-term key generation capacity. Our results may guide design and analysis of future missions, and establish performance benchmarks for both sources and detectors.
ISSN:2056-6387
2056-6387
DOI:10.1038/s41534-022-00525-3