Loading…
Mapping stress heterogeneity in single-crystal superalloys by novel submicron-resolved X-ray diffraction
Coherent precipitation, a common strengthening approach, is typically subjected to spatial non-uniformity due to microscopic segregation, leading to multi-scale stress heterogeneity. Such heterogeneity remains poorly characterized because unavailable local strain-free lattice parameters invalidate t...
Saved in:
Published in: | Materials research letters 2024-06, Vol.12 (6), p.450-458 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Coherent precipitation, a common strengthening approach, is typically subjected to spatial non-uniformity due to microscopic segregation, leading to multi-scale stress heterogeneity. Such heterogeneity remains poorly characterized because unavailable local strain-free lattice parameters invalidate traditional diffraction-based stress measurement techniques. To overcome these limitations, we demonstrate a submicron-resolved synchrotron X-ray diffraction method to map coherency stress distribution based on the γ/γ′ lattice misfits in Ni-based superalloys. Assisted by finite element analysis, sub-dendritic stresses are deduced from heterogeneous coherency stresses, confirmed by the diffraction experiments. The methodology offers a comprehensive framework to assess stress heterogeneity at multi-scales for all coherent precipitation strengthened alloys.Impact statementThis study marks the first successful quantification of stress heterogeneity at multi-scales in alloys strengthened by non-uniform coherent precipitation, even in absence of strain-free lattice constants. |
---|---|
ISSN: | 2166-3831 2166-3831 |
DOI: | 10.1080/21663831.2024.2341932 |