Loading…
Existence and Uniqueness of a Curve with Both Minimal Length and Minimal Area
Consider the family of generalized parabolas {y=−axr+c|a,r,c,x>0,risafixedconstant} that pass through a given point in the first quadrant (and hence, depend on one parameter only). Find the parameter values for which the piece of the corresponding parabola in the first quadrant either encloses a...
Saved in:
Published in: | Mathematics (Basel) 2022-11, Vol.10 (21), p.4061 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Consider the family of generalized parabolas {y=−axr+c|a,r,c,x>0,risafixedconstant} that pass through a given point in the first quadrant (and hence, depend on one parameter only). Find the parameter values for which the piece of the corresponding parabola in the first quadrant either encloses a minimum area, or has a minimum length. We find a sufficient condition under which given the fixed point, the area minimizing curve and the length minimizing curve coincide. The problem led us to a certain implicit function and we explored its asymptotic behavior and convexity. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math10214061 |