Loading…
Existence and Uniqueness of a Curve with Both Minimal Length and Minimal Area
Consider the family of generalized parabolas {y=−axr+c|a,r,c,x>0,risafixedconstant} that pass through a given point in the first quadrant (and hence, depend on one parameter only). Find the parameter values for which the piece of the corresponding parabola in the first quadrant either encloses a...
Saved in:
Published in: | Mathematics (Basel) 2022-11, Vol.10 (21), p.4061 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-18f2779c682801fc19146afdb1c597d3e88961e434a4bcb3998508b7643a27b73 |
container_end_page | |
container_issue | 21 |
container_start_page | 4061 |
container_title | Mathematics (Basel) |
container_volume | 10 |
creator | Fuxman, Ariel Gul, Shai |
description | Consider the family of generalized parabolas {y=−axr+c|a,r,c,x>0,risafixedconstant} that pass through a given point in the first quadrant (and hence, depend on one parameter only). Find the parameter values for which the piece of the corresponding parabola in the first quadrant either encloses a minimum area, or has a minimum length. We find a sufficient condition under which given the fixed point, the area minimizing curve and the length minimizing curve coincide. The problem led us to a certain implicit function and we explored its asymptotic behavior and convexity. |
doi_str_mv | 10.3390/math10214061 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_df1802d99b16452284040b42c2e3dfb1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744754373</galeid><doaj_id>oai_doaj_org_article_df1802d99b16452284040b42c2e3dfb1</doaj_id><sourcerecordid>A744754373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-18f2779c682801fc19146afdb1c597d3e88961e434a4bcb3998508b7643a27b73</originalsourceid><addsrcrecordid>eNpNUU1PAyEQJUYTm9qbP2ATr67ytQsca1O1SRsv9kxYFlqaFips_fj3UldNmYQZHrw3jwwA1wjeESLg_U51awQxorBGZ2CAMWYlyxfnJ_UlGKW0gXkJRDgVA7CYfrrUGa9NoXxbLL17OxhvUiqCLVQxOcR3U3y4bl08hLwtnHc7tS3mxq_y8Uj5g8bRqCtwYdU2mdFvHoLl4_R18lzOX55mk_G81FiQrkTcYsaErjnmEFmNBKK1sm2DdCVYSwznokaGEqpooxsiBK8gb1hNicKsYWQIZr1uG9RG7mM2EL9kUE7-ACGupIqd01sjW4s4xK0QDapphTGnkMKGYo0NaW2DstZNr7WPIf89dXITDtFn-xIzQuuK1PjY8a5_tVJZ1Hkbuqh0jtbsnA7eWJfxMaOUVZQwkgm3PUHHkFI09t8mgvI4MHk6MPINza6FAA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734653627</pqid></control><display><type>article</type><title>Existence and Uniqueness of a Curve with Both Minimal Length and Minimal Area</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Fuxman, Ariel ; Gul, Shai</creator><creatorcontrib>Fuxman, Ariel ; Gul, Shai</creatorcontrib><description>Consider the family of generalized parabolas {y=−axr+c|a,r,c,x>0,risafixedconstant} that pass through a given point in the first quadrant (and hence, depend on one parameter only). Find the parameter values for which the piece of the corresponding parabola in the first quadrant either encloses a minimum area, or has a minimum length. We find a sufficient condition under which given the fixed point, the area minimizing curve and the length minimizing curve coincide. The problem led us to a certain implicit function and we explored its asymptotic behavior and convexity.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math10214061</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Asymptotic properties ; Convexity ; Curves ; Fixed points (mathematics) ; Functions, Implicit ; geometric optimization ; implicit functions ; Maxima and minima ; Parabola ; Parabolas ; Parameters ; Quadrants ; Variables</subject><ispartof>Mathematics (Basel), 2022-11, Vol.10 (21), p.4061</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-18f2779c682801fc19146afdb1c597d3e88961e434a4bcb3998508b7643a27b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2734653627/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2734653627?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Fuxman, Ariel</creatorcontrib><creatorcontrib>Gul, Shai</creatorcontrib><title>Existence and Uniqueness of a Curve with Both Minimal Length and Minimal Area</title><title>Mathematics (Basel)</title><description>Consider the family of generalized parabolas {y=−axr+c|a,r,c,x>0,risafixedconstant} that pass through a given point in the first quadrant (and hence, depend on one parameter only). Find the parameter values for which the piece of the corresponding parabola in the first quadrant either encloses a minimum area, or has a minimum length. We find a sufficient condition under which given the fixed point, the area minimizing curve and the length minimizing curve coincide. The problem led us to a certain implicit function and we explored its asymptotic behavior and convexity.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Asymptotic properties</subject><subject>Convexity</subject><subject>Curves</subject><subject>Fixed points (mathematics)</subject><subject>Functions, Implicit</subject><subject>geometric optimization</subject><subject>implicit functions</subject><subject>Maxima and minima</subject><subject>Parabola</subject><subject>Parabolas</subject><subject>Parameters</subject><subject>Quadrants</subject><subject>Variables</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PAyEQJUYTm9qbP2ATr67ytQsca1O1SRsv9kxYFlqaFips_fj3UldNmYQZHrw3jwwA1wjeESLg_U51awQxorBGZ2CAMWYlyxfnJ_UlGKW0gXkJRDgVA7CYfrrUGa9NoXxbLL17OxhvUiqCLVQxOcR3U3y4bl08hLwtnHc7tS3mxq_y8Uj5g8bRqCtwYdU2mdFvHoLl4_R18lzOX55mk_G81FiQrkTcYsaErjnmEFmNBKK1sm2DdCVYSwznokaGEqpooxsiBK8gb1hNicKsYWQIZr1uG9RG7mM2EL9kUE7-ACGupIqd01sjW4s4xK0QDapphTGnkMKGYo0NaW2DstZNr7WPIf89dXITDtFn-xIzQuuK1PjY8a5_tVJZ1Hkbuqh0jtbsnA7eWJfxMaOUVZQwkgm3PUHHkFI09t8mgvI4MHk6MPINza6FAA</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Fuxman, Ariel</creator><creator>Gul, Shai</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20221101</creationdate><title>Existence and Uniqueness of a Curve with Both Minimal Length and Minimal Area</title><author>Fuxman, Ariel ; Gul, Shai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-18f2779c682801fc19146afdb1c597d3e88961e434a4bcb3998508b7643a27b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Asymptotic properties</topic><topic>Convexity</topic><topic>Curves</topic><topic>Fixed points (mathematics)</topic><topic>Functions, Implicit</topic><topic>geometric optimization</topic><topic>implicit functions</topic><topic>Maxima and minima</topic><topic>Parabola</topic><topic>Parabolas</topic><topic>Parameters</topic><topic>Quadrants</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuxman, Ariel</creatorcontrib><creatorcontrib>Gul, Shai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuxman, Ariel</au><au>Gul, Shai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and Uniqueness of a Curve with Both Minimal Length and Minimal Area</atitle><jtitle>Mathematics (Basel)</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>10</volume><issue>21</issue><spage>4061</spage><pages>4061-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>Consider the family of generalized parabolas {y=−axr+c|a,r,c,x>0,risafixedconstant} that pass through a given point in the first quadrant (and hence, depend on one parameter only). Find the parameter values for which the piece of the corresponding parabola in the first quadrant either encloses a minimum area, or has a minimum length. We find a sufficient condition under which given the fixed point, the area minimizing curve and the length minimizing curve coincide. The problem led us to a certain implicit function and we explored its asymptotic behavior and convexity.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math10214061</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2022-11, Vol.10 (21), p.4061 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_df1802d99b16452284040b42c2e3dfb1 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algorithms Analysis Asymptotic properties Convexity Curves Fixed points (mathematics) Functions, Implicit geometric optimization implicit functions Maxima and minima Parabola Parabolas Parameters Quadrants Variables |
title | Existence and Uniqueness of a Curve with Both Minimal Length and Minimal Area |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20Uniqueness%20of%20a%20Curve%20with%20Both%20Minimal%20Length%20and%20Minimal%20Area&rft.jtitle=Mathematics%20(Basel)&rft.au=Fuxman,%20Ariel&rft.date=2022-11-01&rft.volume=10&rft.issue=21&rft.spage=4061&rft.pages=4061-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math10214061&rft_dat=%3Cgale_doaj_%3EA744754373%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-18f2779c682801fc19146afdb1c597d3e88961e434a4bcb3998508b7643a27b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2734653627&rft_id=info:pmid/&rft_galeid=A744754373&rfr_iscdi=true |