Loading…

Existence and Uniqueness of a Curve with Both Minimal Length and Minimal Area

Consider the family of generalized parabolas {y=−axr+c|a,r,c,x>0,risafixedconstant} that pass through a given point in the first quadrant (and hence, depend on one parameter only). Find the parameter values for which the piece of the corresponding parabola in the first quadrant either encloses a...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2022-11, Vol.10 (21), p.4061
Main Authors: Fuxman, Ariel, Gul, Shai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c293t-18f2779c682801fc19146afdb1c597d3e88961e434a4bcb3998508b7643a27b73
container_end_page
container_issue 21
container_start_page 4061
container_title Mathematics (Basel)
container_volume 10
creator Fuxman, Ariel
Gul, Shai
description Consider the family of generalized parabolas {y=−axr+c|a,r,c,x>0,risafixedconstant} that pass through a given point in the first quadrant (and hence, depend on one parameter only). Find the parameter values for which the piece of the corresponding parabola in the first quadrant either encloses a minimum area, or has a minimum length. We find a sufficient condition under which given the fixed point, the area minimizing curve and the length minimizing curve coincide. The problem led us to a certain implicit function and we explored its asymptotic behavior and convexity.
doi_str_mv 10.3390/math10214061
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_df1802d99b16452284040b42c2e3dfb1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744754373</galeid><doaj_id>oai_doaj_org_article_df1802d99b16452284040b42c2e3dfb1</doaj_id><sourcerecordid>A744754373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-18f2779c682801fc19146afdb1c597d3e88961e434a4bcb3998508b7643a27b73</originalsourceid><addsrcrecordid>eNpNUU1PAyEQJUYTm9qbP2ATr67ytQsca1O1SRsv9kxYFlqaFips_fj3UldNmYQZHrw3jwwA1wjeESLg_U51awQxorBGZ2CAMWYlyxfnJ_UlGKW0gXkJRDgVA7CYfrrUGa9NoXxbLL17OxhvUiqCLVQxOcR3U3y4bl08hLwtnHc7tS3mxq_y8Uj5g8bRqCtwYdU2mdFvHoLl4_R18lzOX55mk_G81FiQrkTcYsaErjnmEFmNBKK1sm2DdCVYSwznokaGEqpooxsiBK8gb1hNicKsYWQIZr1uG9RG7mM2EL9kUE7-ACGupIqd01sjW4s4xK0QDapphTGnkMKGYo0NaW2DstZNr7WPIf89dXITDtFn-xIzQuuK1PjY8a5_tVJZ1Hkbuqh0jtbsnA7eWJfxMaOUVZQwkgm3PUHHkFI09t8mgvI4MHk6MPINza6FAA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734653627</pqid></control><display><type>article</type><title>Existence and Uniqueness of a Curve with Both Minimal Length and Minimal Area</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Fuxman, Ariel ; Gul, Shai</creator><creatorcontrib>Fuxman, Ariel ; Gul, Shai</creatorcontrib><description>Consider the family of generalized parabolas {y=−axr+c|a,r,c,x&gt;0,risafixedconstant} that pass through a given point in the first quadrant (and hence, depend on one parameter only). Find the parameter values for which the piece of the corresponding parabola in the first quadrant either encloses a minimum area, or has a minimum length. We find a sufficient condition under which given the fixed point, the area minimizing curve and the length minimizing curve coincide. The problem led us to a certain implicit function and we explored its asymptotic behavior and convexity.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math10214061</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Asymptotic properties ; Convexity ; Curves ; Fixed points (mathematics) ; Functions, Implicit ; geometric optimization ; implicit functions ; Maxima and minima ; Parabola ; Parabolas ; Parameters ; Quadrants ; Variables</subject><ispartof>Mathematics (Basel), 2022-11, Vol.10 (21), p.4061</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-18f2779c682801fc19146afdb1c597d3e88961e434a4bcb3998508b7643a27b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2734653627/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2734653627?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Fuxman, Ariel</creatorcontrib><creatorcontrib>Gul, Shai</creatorcontrib><title>Existence and Uniqueness of a Curve with Both Minimal Length and Minimal Area</title><title>Mathematics (Basel)</title><description>Consider the family of generalized parabolas {y=−axr+c|a,r,c,x&gt;0,risafixedconstant} that pass through a given point in the first quadrant (and hence, depend on one parameter only). Find the parameter values for which the piece of the corresponding parabola in the first quadrant either encloses a minimum area, or has a minimum length. We find a sufficient condition under which given the fixed point, the area minimizing curve and the length minimizing curve coincide. The problem led us to a certain implicit function and we explored its asymptotic behavior and convexity.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Asymptotic properties</subject><subject>Convexity</subject><subject>Curves</subject><subject>Fixed points (mathematics)</subject><subject>Functions, Implicit</subject><subject>geometric optimization</subject><subject>implicit functions</subject><subject>Maxima and minima</subject><subject>Parabola</subject><subject>Parabolas</subject><subject>Parameters</subject><subject>Quadrants</subject><subject>Variables</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PAyEQJUYTm9qbP2ATr67ytQsca1O1SRsv9kxYFlqaFips_fj3UldNmYQZHrw3jwwA1wjeESLg_U51awQxorBGZ2CAMWYlyxfnJ_UlGKW0gXkJRDgVA7CYfrrUGa9NoXxbLL17OxhvUiqCLVQxOcR3U3y4bl08hLwtnHc7tS3mxq_y8Uj5g8bRqCtwYdU2mdFvHoLl4_R18lzOX55mk_G81FiQrkTcYsaErjnmEFmNBKK1sm2DdCVYSwznokaGEqpooxsiBK8gb1hNicKsYWQIZr1uG9RG7mM2EL9kUE7-ACGupIqd01sjW4s4xK0QDapphTGnkMKGYo0NaW2DstZNr7WPIf89dXITDtFn-xIzQuuK1PjY8a5_tVJZ1Hkbuqh0jtbsnA7eWJfxMaOUVZQwkgm3PUHHkFI09t8mgvI4MHk6MPINza6FAA</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Fuxman, Ariel</creator><creator>Gul, Shai</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20221101</creationdate><title>Existence and Uniqueness of a Curve with Both Minimal Length and Minimal Area</title><author>Fuxman, Ariel ; Gul, Shai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-18f2779c682801fc19146afdb1c597d3e88961e434a4bcb3998508b7643a27b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Asymptotic properties</topic><topic>Convexity</topic><topic>Curves</topic><topic>Fixed points (mathematics)</topic><topic>Functions, Implicit</topic><topic>geometric optimization</topic><topic>implicit functions</topic><topic>Maxima and minima</topic><topic>Parabola</topic><topic>Parabolas</topic><topic>Parameters</topic><topic>Quadrants</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuxman, Ariel</creatorcontrib><creatorcontrib>Gul, Shai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuxman, Ariel</au><au>Gul, Shai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and Uniqueness of a Curve with Both Minimal Length and Minimal Area</atitle><jtitle>Mathematics (Basel)</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>10</volume><issue>21</issue><spage>4061</spage><pages>4061-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>Consider the family of generalized parabolas {y=−axr+c|a,r,c,x&gt;0,risafixedconstant} that pass through a given point in the first quadrant (and hence, depend on one parameter only). Find the parameter values for which the piece of the corresponding parabola in the first quadrant either encloses a minimum area, or has a minimum length. We find a sufficient condition under which given the fixed point, the area minimizing curve and the length minimizing curve coincide. The problem led us to a certain implicit function and we explored its asymptotic behavior and convexity.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math10214061</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2022-11, Vol.10 (21), p.4061
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_df1802d99b16452284040b42c2e3dfb1
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Algorithms
Analysis
Asymptotic properties
Convexity
Curves
Fixed points (mathematics)
Functions, Implicit
geometric optimization
implicit functions
Maxima and minima
Parabola
Parabolas
Parameters
Quadrants
Variables
title Existence and Uniqueness of a Curve with Both Minimal Length and Minimal Area
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20Uniqueness%20of%20a%20Curve%20with%20Both%20Minimal%20Length%20and%20Minimal%20Area&rft.jtitle=Mathematics%20(Basel)&rft.au=Fuxman,%20Ariel&rft.date=2022-11-01&rft.volume=10&rft.issue=21&rft.spage=4061&rft.pages=4061-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math10214061&rft_dat=%3Cgale_doaj_%3EA744754373%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-18f2779c682801fc19146afdb1c597d3e88961e434a4bcb3998508b7643a27b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2734653627&rft_id=info:pmid/&rft_galeid=A744754373&rfr_iscdi=true