Loading…
Epi-Impute: Single-Cell RNA-seq Imputation via Integration with Single-Cell ATAC-seq
Single-cell RNA-seq data contains a lot of dropouts hampering downstream analyses due to the low number and inefficient capture of mRNAs in individual cells. Here, we present Epi-Impute, a computational method for dropout imputation by reconciling expression and epigenomic data. Epi-Impute leverages...
Saved in:
Published in: | International journal of molecular sciences 2023-03, Vol.24 (7), p.6229 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Single-cell RNA-seq data contains a lot of dropouts hampering downstream analyses due to the low number and inefficient capture of mRNAs in individual cells. Here, we present Epi-Impute, a computational method for dropout imputation by reconciling expression and epigenomic data. Epi-Impute leverages single-cell ATAC-seq data as an additional source of information about gene activity to reduce the number of dropouts. We demonstrate that Epi-Impute outperforms existing methods, especially for very sparse single-cell RNA-seq data sets, significantly reducing imputation error. At the same time, Epi-Impute accurately captures the primary distribution of gene expression across cells while preserving the gene-gene and cell-cell relationship in the data. Moreover, Epi-Impute allows for the discovery of functionally relevant cell clusters as a result of the increased resolution of scRNA-seq data due to imputation. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms24076229 |