Loading…
Mechanical Behaviour of Macroscopic Interfaces for 3D Printed Multi-material Samples
The development of 3D Printing technologies introduced new possibilities regarding multi-material part production. Fused Filament Fabrication (FFF) is one of those technologies suitable for multi-material 3D printing. Usually, multi-material parts are manufactured from different blends of the same m...
Saved in:
Published in: | MATEC Web of Conferences 2022, Vol.368, p.1004 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The development of 3D Printing technologies introduced new possibilities regarding multi-material part production. Fused Filament Fabrication (FFF) is one of those technologies suitable for multi-material 3D printing. Usually, multi-material parts are manufactured from different blends of the same material, also known as multi-colour 3D printing, or from materials with good chemical compatibility. Conventionally, a simple face-to-face bond interface between parts’ bodies and a chemical bond between thermoplastics define the mechanical performance of multi-material components. In this regard, the paper aimed to investigate the strength of the contact interface of multi-material specimens using a geometrical approach. Therefore, multiple interlocking interfaces were investigated, such as omega shape, T-shape, dovetail, and others for samples made of low-compatibility thermoplastic materials, acrylic styrene-acrylonitrile (ASA), thermoplastic polyurethane (TPU). The results showed that macroscopic inter-locking interfaces are significantly increasing the mechanical properties. |
---|---|
ISSN: | 2261-236X 2274-7214 2261-236X |
DOI: | 10.1051/matecconf/202236801004 |