Loading…
An explainable transfer learning framework for multi-classification of lung diseases in chest X-rays
In the field of medical imaging, the increasing demand for advanced computer-aided diagnosis systems is crucial in radiography. Accurate identification of various diseases, such as COVID-19, pneumonia, tuberculosis, and pulmonary lung nodules, holds vital significance. Despite substantial progress i...
Saved in:
Published in: | Alexandria engineering journal 2024-07, Vol.98, p.328-343 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the field of medical imaging, the increasing demand for advanced computer-aided diagnosis systems is crucial in radiography. Accurate identification of various diseases, such as COVID-19, pneumonia, tuberculosis, and pulmonary lung nodules, holds vital significance. Despite substantial progress in the medical field, a persistent research gap necessitates the development of models that excel in precision and provide transparency in decision-making processes. In order to address this issue, this work introduces an approach that utilizes transfer learning through the EfficientNet-B4 architecture, leveraging a pre-trained model to enhance the classification performance on a comprehensive dataset of lung X-rays. The integration of explainable artificial intelligence (XAI), specifically emphasizing Grad-CAM, contributes to model interpretability by providing insights into the neural network’s decision-making process, elucidating the salient features and activation regions influencing multi-disease classifications. The result is a robust multi-disease classification system achieving an impressive 96% accuracy, accompanied by visualizations highlighting critical regions in X-ray images. This investigation not only advances the progression of computer-aided diagnosis systems but also sets a pioneering benchmark for the development of dependable and transparent diagnostic models for lung disease identification. |
---|---|
ISSN: | 1110-0168 |
DOI: | 10.1016/j.aej.2024.04.072 |