Loading…
Measurements of the branching fractions of Ξ c 0 → Ξ 0 π 0 $$ {\Xi}_c^0\to {\Xi}^0{\pi}^0 $$ , Ξ c 0 → Ξ 0 η $$ {\Xi}_c^0\to {\Xi}^0\eta $$ , and Ξ c 0 → Ξ 0 η ′ $$ {\Xi}_c^0\to {\Xi}^0{\eta}^{\prime } $$ and asymmetry parameter of Ξ c 0 → Ξ 0 π 0 $$ {\Xi}_c^0\to {\Xi}^0{\pi}^0
Abstract We present a study of Ξ c 0 → Ξ 0 π 0 $$ {\Xi}_c^0\to {\Xi}^0{\pi}^0 $$ , Ξ c 0 → Ξ 0 η $$ {\Xi}_c^0\to {\Xi}^0\eta $$ , and Ξ c 0 → Ξ 0 η ′ $$ {\Xi}_c^0\to {\Xi}^0{\eta}^{\prime } $$ decays using the Belle and Belle II data samples, which have integrated luminosities of 980 fb −1 and 426 f...
Saved in:
Published in: | The journal of high energy physics 2024-10, Vol.2024 (10), p.1-24 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract We present a study of Ξ c 0 → Ξ 0 π 0 $$ {\Xi}_c^0\to {\Xi}^0{\pi}^0 $$ , Ξ c 0 → Ξ 0 η $$ {\Xi}_c^0\to {\Xi}^0\eta $$ , and Ξ c 0 → Ξ 0 η ′ $$ {\Xi}_c^0\to {\Xi}^0{\eta}^{\prime } $$ decays using the Belle and Belle II data samples, which have integrated luminosities of 980 fb −1 and 426 fb −1, respectively. We measure the following relative branching fractions B Ξ c 0 → Ξ 0 π 0 / B Ξ c 0 → Ξ − π + = 0.48 ± 0.02 stat ± 0.03 syst , B Ξ c 0 → Ξ 0 η / B Ξ c 0 → Ξ − π + = 0.11 ± 0.01 stat ± 0.01 syst , B Ξ c 0 → Ξ 0 η ′ / B Ξ c 0 → Ξ − π + = 0.08 ± 0.02 stat ± 0.01 syst $$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0{\pi}^0\right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.48\pm 0.02\left(\textrm{stat}\right)\pm 0.03\left(\textrm{syst}\right),\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0\eta \right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.11\pm 0.01\left(\textrm{stat}\right)\pm 0.01\left(\textrm{syst}\right),\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0{\eta}^{\prime}\right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.08\pm 0.02\left(\textrm{stat}\right)\pm 0.01\left(\textrm{syst}\right)\end{array}} $$ for the first time, where the uncertainties are statistical (stat) and systematic (syst). By multiplying by the branching fraction of the normalization mode, B Ξ c 0 → Ξ − π + $$ \mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right) $$ , we obtain the following absolute branching fraction results B Ξ c 0 → Ξ 0 π 0 = 6.9 ± 0.3 stat ± 0.5 syst ± 1.3 norm × 10 − 3 , B Ξ c 0 → Ξ 0 η = 1.6 ± 0.2 stat ± 0.2 syst ± 0.3 norm × 10 − 3 , B Ξ c 0 → Ξ 0 η ′ = 1.2 ± 0.3 stat ± 0.1 syst ± 0.2 norm × 10 − 3 , $$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0{\pi}^0\right)=\left(6.9\pm 0.3\left(\textrm{stat}\right)\pm 0.5\left(\textrm{syst}\right)\pm 1.3\left(\operatorname{norm}\right)\right)\times {10}^{-3},\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0\eta \right)=\left(1.6\pm 0.2\left(\textrm{stat}\right)\pm 0.2\left(\textrm{syst}\right)\pm 0.3\left(\operatorname{norm}\right)\right)\times {10}^{-3},\\ {}\mathcal{B}\left({\varXi}_c^0\to {\Xi}^0{\eta}^{\prime}\right)=\left(1.2\pm 0.3\left(\textrm{stat}\right)\pm 0.1\left(\textrm{syst}\right)\pm 0.2\left(\operatorname{norm}\right)\right)\times {10}^{-3},\end{array}} $$ where the third uncertainties are from B Ξ c 0 → Ξ − π + $$ \mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right) $$ . The asymmetry parameter for Ξ c 0 → Ξ 0 π 0 $$ |
---|---|
ISSN: | 1029-8479 |
DOI: | 10.1007/JHEP10(2024)045 |