Loading…

Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping

Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells’ interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance of si...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2016-05, Vol.7 (1), p.11556-11556, Article 11556
Main Authors: Augustsson, Per, Karlsen, Jonas T., Su, Hao-Wei, Bruus, Henrik, Voldman, Joel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells’ interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic focusing of cell lines and leukocytes, showing that acoustic properties provide phenotypic information independent of size. Acoustophoresis, a method to manipulate individual cells based on their acoustic properties is confounded by a strong dependency on cell size. Here the authors present iso-acoustic focussing, a way to separate cells in a microfluidic chamber according to their effective acoustic impedance, independent of their size.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms11556