Loading…
Geometric phase in quantum synchronization
We consider a quantum limit-cycle oscillator implemented in a spin system whose quantization axis is slowly rotated. Using a kinematic approach to define geometric phases in nonunitary evolution, we show that the quantum limit-cycle oscillator attains a geometric phase when the rotation is sufficien...
Saved in:
Published in: | Physical review research 2023-06, Vol.5 (2), p.023182, Article 023182 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider a quantum limit-cycle oscillator implemented in a spin system whose quantization axis is slowly rotated. Using a kinematic approach to define geometric phases in nonunitary evolution, we show that the quantum limit-cycle oscillator attains a geometric phase when the rotation is sufficiently slow. In the presence of an external signal, the geometric phase as a function of the signal strength and the detuning between the signal and the natural frequency of oscillation shows a structure that is strikingly similar to the Arnold tongue of synchronization. Surprisingly, this structure vanishes together with the Arnold tongue when the system is in a parameter regime of synchronization blockade. We derive an analytic expression for the geometric phase of this system, valid in the limit of slow rotation of the quantization axis and weak external signal strength, and we provide an intuitive interpretation for this surprising effect. |
---|---|
ISSN: | 2643-1564 2643-1564 |
DOI: | 10.1103/PhysRevResearch.5.023182 |