Loading…
The nonlocal bistable equation: Stationary solutions on a bounded interval
We discuss instability and existence issues for the nonlocal bistable equation. This model arises as the Euler-Lagrange equation of a nonlocal, van der Waals type functional. Taking the viewpoint of the calculus of variations, we prove that for a class of nonlocalities this functional does not admit...
Saved in:
Published in: | Electronic journal of differential equations 2002-01, Vol.2002 (2), p.1-12 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We discuss instability and existence issues for the nonlocal bistable equation. This model arises as the Euler-Lagrange equation of a nonlocal, van der Waals type functional. Taking the viewpoint of the calculus of variations, we prove that for a class of nonlocalities this functional does not admit nonconstant $C^1$ local minimizers. By taking variations along non-smooth paths, we give examples of nonlocalities for which the functional does not admit local minimizers having a finite number of discontinuities. We also construct monotone solutions and give a criterion for nonexistence of nonconstant solutions. |
---|---|
ISSN: | 1072-6691 |