Loading…
Evaluation of toxicity of zinc oxide nanorods on green microalgae of freshwater and marine ecosystems
Zinc oxide (ZnO) nanomaterials (NMs) are widely used in the manufacture of several commercial products like foods, packaging, cosmetics, medicines and healthcare formulations and anti-fouling paints. These NMs can pollute water bodies when they become bioavailable. In this context, this study invest...
Saved in:
Published in: | Environmental chemistry and ecotoxicology 2021, Vol.3, p.85-90 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Zinc oxide (ZnO) nanomaterials (NMs) are widely used in the manufacture of several commercial products like foods, packaging, cosmetics, medicines and healthcare formulations and anti-fouling paints. These NMs can pollute water bodies when they become bioavailable. In this context, this study investigated the toxicity of ZnO nanorods (NRs) on green microalgae from freshwater and marine ecosystems, to better understand the behavior of this NM on each environment. Two green microalgae species, Desmodesmus subspicatus (freshwater) and Tetraselmus sp. (marine), were evaluated by chronic toxicity tests and oxidative stress induction by the enzymatic activity of catalase (CAT). The exposition assays were performed using three different concentrations of ZnO NRs (0.1, 1.0, and 10 mg/L, and a negative control). ZnO NRs significantly affected the growth rate of both tested chlorophytes. The chronic toxicity test showed LOEC (Lowest Observed Effect Concentration) levels of 10 mg/L (72 h) for D. subspicatus and 1.0 mg/L (24 h) for Tetraselmis sp. It was observed NOEC (No Observed Effect Concentration) levels of 1.0 mg/L to D. subspicatus was (at 72 h) and of |
---|---|
ISSN: | 2590-1826 2590-1826 |
DOI: | 10.1016/j.enceco.2021.01.003 |