Loading…

A semi-transparent thermoelectric glazing nanogenerator with aluminium doped zinc oxide and copper iodide thin films

To address the pressing need for reducing building energy consumption and combating climate change, thermoelectric glazing (TEGZ) presents a promising solution. This technology harnesses waste heat from buildings and converts it into electricity, while maintaining comfortable indoor temperatures. He...

Full description

Saved in:
Bibliographic Details
Published in:Communications engineering 2024-10, Vol.3 (1), p.145-13, Article 145
Main Authors: Al-Fartoos, Mustafa Majid Rashak, Roy, Anurag, Mallick, Tapas K., Tahir, Asif Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To address the pressing need for reducing building energy consumption and combating climate change, thermoelectric glazing (TEGZ) presents a promising solution. This technology harnesses waste heat from buildings and converts it into electricity, while maintaining comfortable indoor temperatures. Here, we developed a TEGZ using cost-effective materials, specifically aluminium-doped zinc oxide (AZO) and copper iodide (CuI). Both AZO and CuI exhibit a high figure of merit (ZT), a key indicator of thermoelectric efficiency, with values of 1.37 and 0.72, respectively, at 340 K, demonstrating their strong potential for efficient heat-to-electricity conversion. Additionally, we fabricated an AZO-CuI based TEGZ prototype (5 × 5 cm²), incorporating eight nanogenerators, each producing 32 nW at 340 K. Early testing of the prototype showed a notable temperature differential of 22.5 °C between the outer and inner surfaces of the window glazing. These results suggest TEGZ could advance building energy efficiency, offering a futuristic approach to sustainable build environment. A thermoelectric glazing prototype made from cost-effective aluminium-doped zinc oxide and copper iodide nanogenerators achieves a 22.5 °C temperature difference on either side of the glaze, harvesting electricity from the differential. Such glazes are critical for increasing energy efficiency in the built environment.
ISSN:2731-3395
2731-3395
DOI:10.1038/s44172-024-00291-4