Loading…

Hand-Eye Calibration via Linear and Nonlinear Regressions

For a robot to pick up an object viewed by a camera, the object’s position in the image coordinate system must be converted to the robot coordinate system. Recently, a neural network-based method was proposed to achieve this task. This methodology can accurately convert the object’s position despite...

Full description

Saved in:
Bibliographic Details
Published in:Automation (Basel) 2023-06, Vol.4 (2), p.151-163
Main Author: Sato, Junya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For a robot to pick up an object viewed by a camera, the object’s position in the image coordinate system must be converted to the robot coordinate system. Recently, a neural network-based method was proposed to achieve this task. This methodology can accurately convert the object’s position despite errors and disturbances that arise in a real-world environment, such as the deflection of a robot arm triggered by changes in the robot’s posture. However, this method has some drawbacks, such as the need for significant effort in model selection, hyperparameter tuning, and lack of stability and interpretability in the learning results. To address these issues, a method involving linear and nonlinear regressions is proposed. First, linear regression is employed to convert the object’s position from the image coordinate system to the robot base coordinate system. Next, B-splines-based nonlinear regression is applied to address the errors and disturbances that occur in a real-world environment. Since this approach is more stable and has better calibration performance with interpretability as opposed to the recent method, it is more practical. In the experiment, calibration results were incorporated into a robot, and its performance was evaluated quantitatively. The proposed method achieved a mean position error of 0.5 mm, while the neural network-based method achieved an error of 1.1 mm.
ISSN:2673-4052
2673-4052
DOI:10.3390/automation4020010