Loading…

Assessing Planet Nanosatellite Sensors for Ocean Color Usage

An increasing number of commercial nanosatellite-based Earth-observing sensors are providing high-resolution images for much of the coastal ocean region. Traditionally, to improve the accuracy of normalized water-leaving radiance (nLw) estimates, sensor gains are computed using in-orbit vicarious ca...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2023-11, Vol.15 (22), p.5359
Main Authors: Lewis, Mark D., Jarreau, Brittney, Jolliff, Jason, Ladner, Sherwin, Lawson, Timothy A., McCarthy, Sean, Martinolich, Paul, Montes, Marcos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-33dc602a1481c8140f3c05696d33d9128710e2c5527e77fd665c2283f6b12bd53
cites cdi_FETCH-LOGICAL-c400t-33dc602a1481c8140f3c05696d33d9128710e2c5527e77fd665c2283f6b12bd53
container_end_page
container_issue 22
container_start_page 5359
container_title Remote sensing (Basel, Switzerland)
container_volume 15
creator Lewis, Mark D.
Jarreau, Brittney
Jolliff, Jason
Ladner, Sherwin
Lawson, Timothy A.
McCarthy, Sean
Martinolich, Paul
Montes, Marcos
description An increasing number of commercial nanosatellite-based Earth-observing sensors are providing high-resolution images for much of the coastal ocean region. Traditionally, to improve the accuracy of normalized water-leaving radiance (nLw) estimates, sensor gains are computed using in-orbit vicarious calibration methods. The initial series of Planet nanosatellite sensors were primarily designed for land applications and are missing a second near-infrared band, which is typically used in selecting aerosol models for atmospheric correction over oceanographic regions. This study focuses on the vicarious calibration of Planet sensors and the duplication of its red band for use in both the aerosol model selection process and as input to bio-optical ocean product algorithms. Error measurements show the calibration performed well at the Marine Optical Buoy location near Lanai, Hawaii. Further validation was performed using in situ data from the Aerosol Robotic Network—Ocean Color platform in the northern Adriatic Sea. Bio-optical ocean color products were generated and compared with products from the Visual Infrared Imaging Radiometric Suite sensor. This approach for sensor gain generation and usage proved effective in increasing the accuracy of nLw measurements for bio-optical ocean product algorithms.
doi_str_mv 10.3390/rs15225359
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e609ad17981f4e8498b9ac16292c0983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A774325761</galeid><doaj_id>oai_doaj_org_article_e609ad17981f4e8498b9ac16292c0983</doaj_id><sourcerecordid>A774325761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-33dc602a1481c8140f3c05696d33d9128710e2c5527e77fd665c2283f6b12bd53</originalsourceid><addsrcrecordid>eNpNUU1Lw0AQDaJgqb34CwLehOh-f4CXUvwoFCtoz8t2MxtS0mzdTQ_-e1cj6sxhhjfzHjO8orjE6IZSjW5jwpwQTrk-KSYESVIxosnpv_68mKW0QzkoxRqxSXE3TwlSavumfOlsD0P5bPuQ7ABd1w5QvkKfQkylD7FcO7B9uQhd7jfJNnBRnHnbJZj91Gmxebh_WzxVq_XjcjFfVY4hNFSU1k4gYjFT2CnMkKcOcaFFnScaEyUxAuI4JxKk9LUQ3BGiqBdbTLY1p9NiOerWwe7MIbZ7Gz9MsK35BkJsjI1D6zowIJC2NZZaYc9AMa222jos8vMOaUWz1tWodYjh_QhpMLtwjH0-3xClKWWEYZS3bsatxmbRtvdhiNblrGHfutCDbzM-l5JRwqXAmXA9ElwMKUXwv2diZL7cMX_u0E8H1X2i</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893342410</pqid></control><display><type>article</type><title>Assessing Planet Nanosatellite Sensors for Ocean Color Usage</title><source>Publicly Available Content (ProQuest)</source><creator>Lewis, Mark D. ; Jarreau, Brittney ; Jolliff, Jason ; Ladner, Sherwin ; Lawson, Timothy A. ; McCarthy, Sean ; Martinolich, Paul ; Montes, Marcos</creator><creatorcontrib>Lewis, Mark D. ; Jarreau, Brittney ; Jolliff, Jason ; Ladner, Sherwin ; Lawson, Timothy A. ; McCarthy, Sean ; Martinolich, Paul ; Montes, Marcos</creatorcontrib><description>An increasing number of commercial nanosatellite-based Earth-observing sensors are providing high-resolution images for much of the coastal ocean region. Traditionally, to improve the accuracy of normalized water-leaving radiance (nLw) estimates, sensor gains are computed using in-orbit vicarious calibration methods. The initial series of Planet nanosatellite sensors were primarily designed for land applications and are missing a second near-infrared band, which is typically used in selecting aerosol models for atmospheric correction over oceanographic regions. This study focuses on the vicarious calibration of Planet sensors and the duplication of its red band for use in both the aerosol model selection process and as input to bio-optical ocean product algorithms. Error measurements show the calibration performed well at the Marine Optical Buoy location near Lanai, Hawaii. Further validation was performed using in situ data from the Aerosol Robotic Network—Ocean Color platform in the northern Adriatic Sea. Bio-optical ocean color products were generated and compared with products from the Visual Infrared Imaging Radiometric Suite sensor. This approach for sensor gain generation and usage proved effective in increasing the accuracy of nLw measurements for bio-optical ocean product algorithms.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs15225359</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Aerosol Robotic Network ; Aerosols ; Algorithms ; Artificial satellites in remote sensing ; Atmosphere ; Atmospheric correction ; Atmospheric models ; Automation ; Calibration ; Chlorophyll ; Color ; Comparative analysis ; Earth ; Error analysis ; Gas absorption ; Humidity ; Image resolution ; Infrared imaging ; Measurement ; Methods ; nanosatellite ; Nanosatellites ; Ocean ; Ocean color ; Optical properties ; Particle size ; Planets ; Radiance ; Remote sensing ; Satellites ; Sensors ; Technology application ; vicarious calibration</subject><ispartof>Remote sensing (Basel, Switzerland), 2023-11, Vol.15 (22), p.5359</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-33dc602a1481c8140f3c05696d33d9128710e2c5527e77fd665c2283f6b12bd53</citedby><cites>FETCH-LOGICAL-c400t-33dc602a1481c8140f3c05696d33d9128710e2c5527e77fd665c2283f6b12bd53</cites><orcidid>0000-0002-4725-5380 ; 0000-0002-0829-6294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2893342410/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2893342410?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Lewis, Mark D.</creatorcontrib><creatorcontrib>Jarreau, Brittney</creatorcontrib><creatorcontrib>Jolliff, Jason</creatorcontrib><creatorcontrib>Ladner, Sherwin</creatorcontrib><creatorcontrib>Lawson, Timothy A.</creatorcontrib><creatorcontrib>McCarthy, Sean</creatorcontrib><creatorcontrib>Martinolich, Paul</creatorcontrib><creatorcontrib>Montes, Marcos</creatorcontrib><title>Assessing Planet Nanosatellite Sensors for Ocean Color Usage</title><title>Remote sensing (Basel, Switzerland)</title><description>An increasing number of commercial nanosatellite-based Earth-observing sensors are providing high-resolution images for much of the coastal ocean region. Traditionally, to improve the accuracy of normalized water-leaving radiance (nLw) estimates, sensor gains are computed using in-orbit vicarious calibration methods. The initial series of Planet nanosatellite sensors were primarily designed for land applications and are missing a second near-infrared band, which is typically used in selecting aerosol models for atmospheric correction over oceanographic regions. This study focuses on the vicarious calibration of Planet sensors and the duplication of its red band for use in both the aerosol model selection process and as input to bio-optical ocean product algorithms. Error measurements show the calibration performed well at the Marine Optical Buoy location near Lanai, Hawaii. Further validation was performed using in situ data from the Aerosol Robotic Network—Ocean Color platform in the northern Adriatic Sea. Bio-optical ocean color products were generated and compared with products from the Visual Infrared Imaging Radiometric Suite sensor. This approach for sensor gain generation and usage proved effective in increasing the accuracy of nLw measurements for bio-optical ocean product algorithms.</description><subject>Accuracy</subject><subject>Aerosol Robotic Network</subject><subject>Aerosols</subject><subject>Algorithms</subject><subject>Artificial satellites in remote sensing</subject><subject>Atmosphere</subject><subject>Atmospheric correction</subject><subject>Atmospheric models</subject><subject>Automation</subject><subject>Calibration</subject><subject>Chlorophyll</subject><subject>Color</subject><subject>Comparative analysis</subject><subject>Earth</subject><subject>Error analysis</subject><subject>Gas absorption</subject><subject>Humidity</subject><subject>Image resolution</subject><subject>Infrared imaging</subject><subject>Measurement</subject><subject>Methods</subject><subject>nanosatellite</subject><subject>Nanosatellites</subject><subject>Ocean</subject><subject>Ocean color</subject><subject>Optical properties</subject><subject>Particle size</subject><subject>Planets</subject><subject>Radiance</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Technology application</subject><subject>vicarious calibration</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1Lw0AQDaJgqb34CwLehOh-f4CXUvwoFCtoz8t2MxtS0mzdTQ_-e1cj6sxhhjfzHjO8orjE6IZSjW5jwpwQTrk-KSYESVIxosnpv_68mKW0QzkoxRqxSXE3TwlSavumfOlsD0P5bPuQ7ABd1w5QvkKfQkylD7FcO7B9uQhd7jfJNnBRnHnbJZj91Gmxebh_WzxVq_XjcjFfVY4hNFSU1k4gYjFT2CnMkKcOcaFFnScaEyUxAuI4JxKk9LUQ3BGiqBdbTLY1p9NiOerWwe7MIbZ7Gz9MsK35BkJsjI1D6zowIJC2NZZaYc9AMa222jos8vMOaUWz1tWodYjh_QhpMLtwjH0-3xClKWWEYZS3bsatxmbRtvdhiNblrGHfutCDbzM-l5JRwqXAmXA9ElwMKUXwv2diZL7cMX_u0E8H1X2i</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Lewis, Mark D.</creator><creator>Jarreau, Brittney</creator><creator>Jolliff, Jason</creator><creator>Ladner, Sherwin</creator><creator>Lawson, Timothy A.</creator><creator>McCarthy, Sean</creator><creator>Martinolich, Paul</creator><creator>Montes, Marcos</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4725-5380</orcidid><orcidid>https://orcid.org/0000-0002-0829-6294</orcidid></search><sort><creationdate>20231101</creationdate><title>Assessing Planet Nanosatellite Sensors for Ocean Color Usage</title><author>Lewis, Mark D. ; Jarreau, Brittney ; Jolliff, Jason ; Ladner, Sherwin ; Lawson, Timothy A. ; McCarthy, Sean ; Martinolich, Paul ; Montes, Marcos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-33dc602a1481c8140f3c05696d33d9128710e2c5527e77fd665c2283f6b12bd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Aerosol Robotic Network</topic><topic>Aerosols</topic><topic>Algorithms</topic><topic>Artificial satellites in remote sensing</topic><topic>Atmosphere</topic><topic>Atmospheric correction</topic><topic>Atmospheric models</topic><topic>Automation</topic><topic>Calibration</topic><topic>Chlorophyll</topic><topic>Color</topic><topic>Comparative analysis</topic><topic>Earth</topic><topic>Error analysis</topic><topic>Gas absorption</topic><topic>Humidity</topic><topic>Image resolution</topic><topic>Infrared imaging</topic><topic>Measurement</topic><topic>Methods</topic><topic>nanosatellite</topic><topic>Nanosatellites</topic><topic>Ocean</topic><topic>Ocean color</topic><topic>Optical properties</topic><topic>Particle size</topic><topic>Planets</topic><topic>Radiance</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Technology application</topic><topic>vicarious calibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewis, Mark D.</creatorcontrib><creatorcontrib>Jarreau, Brittney</creatorcontrib><creatorcontrib>Jolliff, Jason</creatorcontrib><creatorcontrib>Ladner, Sherwin</creatorcontrib><creatorcontrib>Lawson, Timothy A.</creatorcontrib><creatorcontrib>McCarthy, Sean</creatorcontrib><creatorcontrib>Martinolich, Paul</creatorcontrib><creatorcontrib>Montes, Marcos</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewis, Mark D.</au><au>Jarreau, Brittney</au><au>Jolliff, Jason</au><au>Ladner, Sherwin</au><au>Lawson, Timothy A.</au><au>McCarthy, Sean</au><au>Martinolich, Paul</au><au>Montes, Marcos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing Planet Nanosatellite Sensors for Ocean Color Usage</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>15</volume><issue>22</issue><spage>5359</spage><pages>5359-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>An increasing number of commercial nanosatellite-based Earth-observing sensors are providing high-resolution images for much of the coastal ocean region. Traditionally, to improve the accuracy of normalized water-leaving radiance (nLw) estimates, sensor gains are computed using in-orbit vicarious calibration methods. The initial series of Planet nanosatellite sensors were primarily designed for land applications and are missing a second near-infrared band, which is typically used in selecting aerosol models for atmospheric correction over oceanographic regions. This study focuses on the vicarious calibration of Planet sensors and the duplication of its red band for use in both the aerosol model selection process and as input to bio-optical ocean product algorithms. Error measurements show the calibration performed well at the Marine Optical Buoy location near Lanai, Hawaii. Further validation was performed using in situ data from the Aerosol Robotic Network—Ocean Color platform in the northern Adriatic Sea. Bio-optical ocean color products were generated and compared with products from the Visual Infrared Imaging Radiometric Suite sensor. This approach for sensor gain generation and usage proved effective in increasing the accuracy of nLw measurements for bio-optical ocean product algorithms.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs15225359</doi><orcidid>https://orcid.org/0000-0002-4725-5380</orcidid><orcidid>https://orcid.org/0000-0002-0829-6294</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2023-11, Vol.15 (22), p.5359
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e609ad17981f4e8498b9ac16292c0983
source Publicly Available Content (ProQuest)
subjects Accuracy
Aerosol Robotic Network
Aerosols
Algorithms
Artificial satellites in remote sensing
Atmosphere
Atmospheric correction
Atmospheric models
Automation
Calibration
Chlorophyll
Color
Comparative analysis
Earth
Error analysis
Gas absorption
Humidity
Image resolution
Infrared imaging
Measurement
Methods
nanosatellite
Nanosatellites
Ocean
Ocean color
Optical properties
Particle size
Planets
Radiance
Remote sensing
Satellites
Sensors
Technology application
vicarious calibration
title Assessing Planet Nanosatellite Sensors for Ocean Color Usage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A24%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20Planet%20Nanosatellite%20Sensors%20for%20Ocean%20Color%20Usage&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Lewis,%20Mark%20D.&rft.date=2023-11-01&rft.volume=15&rft.issue=22&rft.spage=5359&rft.pages=5359-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs15225359&rft_dat=%3Cgale_doaj_%3EA774325761%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-33dc602a1481c8140f3c05696d33d9128710e2c5527e77fd665c2283f6b12bd53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2893342410&rft_id=info:pmid/&rft_galeid=A774325761&rfr_iscdi=true