Loading…
Assessing Planet Nanosatellite Sensors for Ocean Color Usage
An increasing number of commercial nanosatellite-based Earth-observing sensors are providing high-resolution images for much of the coastal ocean region. Traditionally, to improve the accuracy of normalized water-leaving radiance (nLw) estimates, sensor gains are computed using in-orbit vicarious ca...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2023-11, Vol.15 (22), p.5359 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c400t-33dc602a1481c8140f3c05696d33d9128710e2c5527e77fd665c2283f6b12bd53 |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-33dc602a1481c8140f3c05696d33d9128710e2c5527e77fd665c2283f6b12bd53 |
container_end_page | |
container_issue | 22 |
container_start_page | 5359 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 15 |
creator | Lewis, Mark D. Jarreau, Brittney Jolliff, Jason Ladner, Sherwin Lawson, Timothy A. McCarthy, Sean Martinolich, Paul Montes, Marcos |
description | An increasing number of commercial nanosatellite-based Earth-observing sensors are providing high-resolution images for much of the coastal ocean region. Traditionally, to improve the accuracy of normalized water-leaving radiance (nLw) estimates, sensor gains are computed using in-orbit vicarious calibration methods. The initial series of Planet nanosatellite sensors were primarily designed for land applications and are missing a second near-infrared band, which is typically used in selecting aerosol models for atmospheric correction over oceanographic regions. This study focuses on the vicarious calibration of Planet sensors and the duplication of its red band for use in both the aerosol model selection process and as input to bio-optical ocean product algorithms. Error measurements show the calibration performed well at the Marine Optical Buoy location near Lanai, Hawaii. Further validation was performed using in situ data from the Aerosol Robotic Network—Ocean Color platform in the northern Adriatic Sea. Bio-optical ocean color products were generated and compared with products from the Visual Infrared Imaging Radiometric Suite sensor. This approach for sensor gain generation and usage proved effective in increasing the accuracy of nLw measurements for bio-optical ocean product algorithms. |
doi_str_mv | 10.3390/rs15225359 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e609ad17981f4e8498b9ac16292c0983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A774325761</galeid><doaj_id>oai_doaj_org_article_e609ad17981f4e8498b9ac16292c0983</doaj_id><sourcerecordid>A774325761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-33dc602a1481c8140f3c05696d33d9128710e2c5527e77fd665c2283f6b12bd53</originalsourceid><addsrcrecordid>eNpNUU1Lw0AQDaJgqb34CwLehOh-f4CXUvwoFCtoz8t2MxtS0mzdTQ_-e1cj6sxhhjfzHjO8orjE6IZSjW5jwpwQTrk-KSYESVIxosnpv_68mKW0QzkoxRqxSXE3TwlSavumfOlsD0P5bPuQ7ABd1w5QvkKfQkylD7FcO7B9uQhd7jfJNnBRnHnbJZj91Gmxebh_WzxVq_XjcjFfVY4hNFSU1k4gYjFT2CnMkKcOcaFFnScaEyUxAuI4JxKk9LUQ3BGiqBdbTLY1p9NiOerWwe7MIbZ7Gz9MsK35BkJsjI1D6zowIJC2NZZaYc9AMa222jos8vMOaUWz1tWodYjh_QhpMLtwjH0-3xClKWWEYZS3bsatxmbRtvdhiNblrGHfutCDbzM-l5JRwqXAmXA9ElwMKUXwv2diZL7cMX_u0E8H1X2i</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893342410</pqid></control><display><type>article</type><title>Assessing Planet Nanosatellite Sensors for Ocean Color Usage</title><source>Publicly Available Content (ProQuest)</source><creator>Lewis, Mark D. ; Jarreau, Brittney ; Jolliff, Jason ; Ladner, Sherwin ; Lawson, Timothy A. ; McCarthy, Sean ; Martinolich, Paul ; Montes, Marcos</creator><creatorcontrib>Lewis, Mark D. ; Jarreau, Brittney ; Jolliff, Jason ; Ladner, Sherwin ; Lawson, Timothy A. ; McCarthy, Sean ; Martinolich, Paul ; Montes, Marcos</creatorcontrib><description>An increasing number of commercial nanosatellite-based Earth-observing sensors are providing high-resolution images for much of the coastal ocean region. Traditionally, to improve the accuracy of normalized water-leaving radiance (nLw) estimates, sensor gains are computed using in-orbit vicarious calibration methods. The initial series of Planet nanosatellite sensors were primarily designed for land applications and are missing a second near-infrared band, which is typically used in selecting aerosol models for atmospheric correction over oceanographic regions. This study focuses on the vicarious calibration of Planet sensors and the duplication of its red band for use in both the aerosol model selection process and as input to bio-optical ocean product algorithms. Error measurements show the calibration performed well at the Marine Optical Buoy location near Lanai, Hawaii. Further validation was performed using in situ data from the Aerosol Robotic Network—Ocean Color platform in the northern Adriatic Sea. Bio-optical ocean color products were generated and compared with products from the Visual Infrared Imaging Radiometric Suite sensor. This approach for sensor gain generation and usage proved effective in increasing the accuracy of nLw measurements for bio-optical ocean product algorithms.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs15225359</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Aerosol Robotic Network ; Aerosols ; Algorithms ; Artificial satellites in remote sensing ; Atmosphere ; Atmospheric correction ; Atmospheric models ; Automation ; Calibration ; Chlorophyll ; Color ; Comparative analysis ; Earth ; Error analysis ; Gas absorption ; Humidity ; Image resolution ; Infrared imaging ; Measurement ; Methods ; nanosatellite ; Nanosatellites ; Ocean ; Ocean color ; Optical properties ; Particle size ; Planets ; Radiance ; Remote sensing ; Satellites ; Sensors ; Technology application ; vicarious calibration</subject><ispartof>Remote sensing (Basel, Switzerland), 2023-11, Vol.15 (22), p.5359</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-33dc602a1481c8140f3c05696d33d9128710e2c5527e77fd665c2283f6b12bd53</citedby><cites>FETCH-LOGICAL-c400t-33dc602a1481c8140f3c05696d33d9128710e2c5527e77fd665c2283f6b12bd53</cites><orcidid>0000-0002-4725-5380 ; 0000-0002-0829-6294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2893342410/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2893342410?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Lewis, Mark D.</creatorcontrib><creatorcontrib>Jarreau, Brittney</creatorcontrib><creatorcontrib>Jolliff, Jason</creatorcontrib><creatorcontrib>Ladner, Sherwin</creatorcontrib><creatorcontrib>Lawson, Timothy A.</creatorcontrib><creatorcontrib>McCarthy, Sean</creatorcontrib><creatorcontrib>Martinolich, Paul</creatorcontrib><creatorcontrib>Montes, Marcos</creatorcontrib><title>Assessing Planet Nanosatellite Sensors for Ocean Color Usage</title><title>Remote sensing (Basel, Switzerland)</title><description>An increasing number of commercial nanosatellite-based Earth-observing sensors are providing high-resolution images for much of the coastal ocean region. Traditionally, to improve the accuracy of normalized water-leaving radiance (nLw) estimates, sensor gains are computed using in-orbit vicarious calibration methods. The initial series of Planet nanosatellite sensors were primarily designed for land applications and are missing a second near-infrared band, which is typically used in selecting aerosol models for atmospheric correction over oceanographic regions. This study focuses on the vicarious calibration of Planet sensors and the duplication of its red band for use in both the aerosol model selection process and as input to bio-optical ocean product algorithms. Error measurements show the calibration performed well at the Marine Optical Buoy location near Lanai, Hawaii. Further validation was performed using in situ data from the Aerosol Robotic Network—Ocean Color platform in the northern Adriatic Sea. Bio-optical ocean color products were generated and compared with products from the Visual Infrared Imaging Radiometric Suite sensor. This approach for sensor gain generation and usage proved effective in increasing the accuracy of nLw measurements for bio-optical ocean product algorithms.</description><subject>Accuracy</subject><subject>Aerosol Robotic Network</subject><subject>Aerosols</subject><subject>Algorithms</subject><subject>Artificial satellites in remote sensing</subject><subject>Atmosphere</subject><subject>Atmospheric correction</subject><subject>Atmospheric models</subject><subject>Automation</subject><subject>Calibration</subject><subject>Chlorophyll</subject><subject>Color</subject><subject>Comparative analysis</subject><subject>Earth</subject><subject>Error analysis</subject><subject>Gas absorption</subject><subject>Humidity</subject><subject>Image resolution</subject><subject>Infrared imaging</subject><subject>Measurement</subject><subject>Methods</subject><subject>nanosatellite</subject><subject>Nanosatellites</subject><subject>Ocean</subject><subject>Ocean color</subject><subject>Optical properties</subject><subject>Particle size</subject><subject>Planets</subject><subject>Radiance</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Technology application</subject><subject>vicarious calibration</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1Lw0AQDaJgqb34CwLehOh-f4CXUvwoFCtoz8t2MxtS0mzdTQ_-e1cj6sxhhjfzHjO8orjE6IZSjW5jwpwQTrk-KSYESVIxosnpv_68mKW0QzkoxRqxSXE3TwlSavumfOlsD0P5bPuQ7ABd1w5QvkKfQkylD7FcO7B9uQhd7jfJNnBRnHnbJZj91Gmxebh_WzxVq_XjcjFfVY4hNFSU1k4gYjFT2CnMkKcOcaFFnScaEyUxAuI4JxKk9LUQ3BGiqBdbTLY1p9NiOerWwe7MIbZ7Gz9MsK35BkJsjI1D6zowIJC2NZZaYc9AMa222jos8vMOaUWz1tWodYjh_QhpMLtwjH0-3xClKWWEYZS3bsatxmbRtvdhiNblrGHfutCDbzM-l5JRwqXAmXA9ElwMKUXwv2diZL7cMX_u0E8H1X2i</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Lewis, Mark D.</creator><creator>Jarreau, Brittney</creator><creator>Jolliff, Jason</creator><creator>Ladner, Sherwin</creator><creator>Lawson, Timothy A.</creator><creator>McCarthy, Sean</creator><creator>Martinolich, Paul</creator><creator>Montes, Marcos</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4725-5380</orcidid><orcidid>https://orcid.org/0000-0002-0829-6294</orcidid></search><sort><creationdate>20231101</creationdate><title>Assessing Planet Nanosatellite Sensors for Ocean Color Usage</title><author>Lewis, Mark D. ; Jarreau, Brittney ; Jolliff, Jason ; Ladner, Sherwin ; Lawson, Timothy A. ; McCarthy, Sean ; Martinolich, Paul ; Montes, Marcos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-33dc602a1481c8140f3c05696d33d9128710e2c5527e77fd665c2283f6b12bd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Aerosol Robotic Network</topic><topic>Aerosols</topic><topic>Algorithms</topic><topic>Artificial satellites in remote sensing</topic><topic>Atmosphere</topic><topic>Atmospheric correction</topic><topic>Atmospheric models</topic><topic>Automation</topic><topic>Calibration</topic><topic>Chlorophyll</topic><topic>Color</topic><topic>Comparative analysis</topic><topic>Earth</topic><topic>Error analysis</topic><topic>Gas absorption</topic><topic>Humidity</topic><topic>Image resolution</topic><topic>Infrared imaging</topic><topic>Measurement</topic><topic>Methods</topic><topic>nanosatellite</topic><topic>Nanosatellites</topic><topic>Ocean</topic><topic>Ocean color</topic><topic>Optical properties</topic><topic>Particle size</topic><topic>Planets</topic><topic>Radiance</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Technology application</topic><topic>vicarious calibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewis, Mark D.</creatorcontrib><creatorcontrib>Jarreau, Brittney</creatorcontrib><creatorcontrib>Jolliff, Jason</creatorcontrib><creatorcontrib>Ladner, Sherwin</creatorcontrib><creatorcontrib>Lawson, Timothy A.</creatorcontrib><creatorcontrib>McCarthy, Sean</creatorcontrib><creatorcontrib>Martinolich, Paul</creatorcontrib><creatorcontrib>Montes, Marcos</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewis, Mark D.</au><au>Jarreau, Brittney</au><au>Jolliff, Jason</au><au>Ladner, Sherwin</au><au>Lawson, Timothy A.</au><au>McCarthy, Sean</au><au>Martinolich, Paul</au><au>Montes, Marcos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing Planet Nanosatellite Sensors for Ocean Color Usage</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>15</volume><issue>22</issue><spage>5359</spage><pages>5359-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>An increasing number of commercial nanosatellite-based Earth-observing sensors are providing high-resolution images for much of the coastal ocean region. Traditionally, to improve the accuracy of normalized water-leaving radiance (nLw) estimates, sensor gains are computed using in-orbit vicarious calibration methods. The initial series of Planet nanosatellite sensors were primarily designed for land applications and are missing a second near-infrared band, which is typically used in selecting aerosol models for atmospheric correction over oceanographic regions. This study focuses on the vicarious calibration of Planet sensors and the duplication of its red band for use in both the aerosol model selection process and as input to bio-optical ocean product algorithms. Error measurements show the calibration performed well at the Marine Optical Buoy location near Lanai, Hawaii. Further validation was performed using in situ data from the Aerosol Robotic Network—Ocean Color platform in the northern Adriatic Sea. Bio-optical ocean color products were generated and compared with products from the Visual Infrared Imaging Radiometric Suite sensor. This approach for sensor gain generation and usage proved effective in increasing the accuracy of nLw measurements for bio-optical ocean product algorithms.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs15225359</doi><orcidid>https://orcid.org/0000-0002-4725-5380</orcidid><orcidid>https://orcid.org/0000-0002-0829-6294</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2023-11, Vol.15 (22), p.5359 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e609ad17981f4e8498b9ac16292c0983 |
source | Publicly Available Content (ProQuest) |
subjects | Accuracy Aerosol Robotic Network Aerosols Algorithms Artificial satellites in remote sensing Atmosphere Atmospheric correction Atmospheric models Automation Calibration Chlorophyll Color Comparative analysis Earth Error analysis Gas absorption Humidity Image resolution Infrared imaging Measurement Methods nanosatellite Nanosatellites Ocean Ocean color Optical properties Particle size Planets Radiance Remote sensing Satellites Sensors Technology application vicarious calibration |
title | Assessing Planet Nanosatellite Sensors for Ocean Color Usage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A24%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20Planet%20Nanosatellite%20Sensors%20for%20Ocean%20Color%20Usage&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Lewis,%20Mark%20D.&rft.date=2023-11-01&rft.volume=15&rft.issue=22&rft.spage=5359&rft.pages=5359-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs15225359&rft_dat=%3Cgale_doaj_%3EA774325761%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-33dc602a1481c8140f3c05696d33d9128710e2c5527e77fd665c2283f6b12bd53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2893342410&rft_id=info:pmid/&rft_galeid=A774325761&rfr_iscdi=true |