Loading…

Comparative Proteomics and Physiological Analyses Reveal Important Maize Filling-Kernel Drought-Responsive Genes and Metabolic Pathways

Despite recent scientific headway in deciphering maize ( L.) drought stress responses, the overall picture of key proteins and genes, pathways, and protein-protein interactions regulating maize filling-kernel drought tolerance is still fragmented. Yet, maize filling-kernel drought stress remains dev...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2019-07, Vol.20 (15), p.3743
Main Authors: Wang, Xuan, Zenda, Tinashe, Liu, Songtao, Liu, Guo, Jin, Hongyu, Dai, Liang, Dong, Anyi, Yang, Yatong, Duan, Huijun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Despite recent scientific headway in deciphering maize ( L.) drought stress responses, the overall picture of key proteins and genes, pathways, and protein-protein interactions regulating maize filling-kernel drought tolerance is still fragmented. Yet, maize filling-kernel drought stress remains devastating and its study is critical for tolerance breeding. Here, through a comprehensive comparative proteomics analysis of filling-kernel proteomes of two contrasting (drought-tolerant YE8112 and drought-sensitive MO17) inbred lines, we report diverse but key molecular actors mediating drought tolerance in maize. Using isobaric tags for relative quantification approach, a total of 5175 differentially abundant proteins (DAPs) were identified from four experimental comparisons. By way of Venn diagram analysis, four critical sets of drought-responsive proteins were mined out and further analyzed by bioinformatics techniques. The YE8112-exclusive DAPs chiefly participated in pathways related to "protein processing in the endoplasmic reticulum" and "tryptophan metabolism", whereas MO17-exclusive DAPs were involved in "starch and sucrose metabolism" and "oxidative phosphorylation" pathways. Most notably, we report that YE8112 kernels were comparatively drought tolerant to MO17 kernels attributable to their redox post translational modifications and epigenetic regulation mechanisms, elevated expression of heat shock proteins, enriched energy metabolism and secondary metabolites biosynthesis, and up-regulated expression of seed storage proteins. Further, comparative physiological analysis and quantitative real time polymerase chain reaction results substantiated the proteomics findings. Our study presents an elaborate understanding of drought-responsive proteins and metabolic pathways mediating maize filling-kernel drought tolerance, and provides important candidate genes for subsequent functional validation.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms20153743