Loading…

Enhanced antitumor efficacy in colon cancer using EGF functionalized PLGA nanoparticles loaded with 5-Fluorouracil and perfluorocarbon

Tumor recurrence and metastasis occur at a high rate in patients with colon cancer. Identification of effective strategies for the treatment of colon cancer is critical. Recently, poly (lactic-co-glycolic acid) (PLGA) has been shown to have potential as a broad therapeutic drug delivery system. We d...

Full description

Saved in:
Bibliographic Details
Published in:BMC cancer 2020-04, Vol.20 (1), p.354-10, Article 354
Main Authors: Wu, Pingping, Zhou, Qing, Zhu, Huayun, Zhuang, Yan, Bao, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tumor recurrence and metastasis occur at a high rate in patients with colon cancer. Identification of effective strategies for the treatment of colon cancer is critical. Recently, poly (lactic-co-glycolic acid) (PLGA) has been shown to have potential as a broad therapeutic drug delivery system. We designed a dual-loaded nanoparticle drug delivery system to overcome the limitations of chemotherapeutic drugs used to treat colon cancer. We developed epidermal growth factor (EGF) functionalized PLGA nanoparticles (NPs) co-loaded with 5-fluorouracil (5Fu) and perfluorocarbon (PFC) (EGF-PLGA@5Fu/PFC) for targeted treatment of colon cancer. CCK-8 assay, Hoechst33342 staining and flow cytometry were performed to investigate the functions of EGF-PLGA@5Fu/PFC NPs in SW620 cells. Beside, animal experiment, histological analysis and immunofluorescence staining were adopted to further confirm the role of EGF-PLGA@5Fu/PFC NPs in vivo. The findings showed that EGF-PLGA@5Fu /PFC NPs had an average size 200 nm and a 5Fu-loading efficiency of 7.29%. Furthermore, in vitro release was pH-sensitive. Targeted EGF-PLGA@5Fu/PFC NPs exhibited higher cellular uptake than non-targeted NPs into colon cancer cells. In addition, EGF-PLGA@5Fu/PFC NPs suppressed cell viability and induced apoptosis in SW620 cells to a greater extent than non-targeted NPs. In tumor xenografted mice, EGF-PLGA@5Fu/PFC NPs suppressed tumor growth more effectively than 5Fu, PLGA@5Fu or PLGA@5Fu/PFC NPs. Histopathological analysis further demonstrated that EGF-targeted NPs inhibited tumor growth to a greater extent than non-targeted or non-NP treatments. The improved therapeutic outcomes observed in this study were due to relief of tumor hypoxia by transport of oxygen by PFC to the tumors. We constructed a biocompatible nanodrug delivery system based on functionalized nanoparticles that provided a novel strategy for selective delivery of chemotherapy drugs to tumors.
ISSN:1471-2407
1471-2407
DOI:10.1186/s12885-020-06803-7