Loading…

Preparation of spherical LiNi0.5Mn1.5O4 with core-multilayer shells structure by co-precipitation method and long cycle performance

As a promising cathode material for lithium ion battemensionalry of high voltage, spinel LiNi0.5Mn1.5O4 has attracted interest due to its high discharging voltage at 4.7 V and high energy density of 610 Wh kg-1. In this work, LiNi0.5Mn1.5O4 with a new core-multilayer shells structure (LNMO-900) is s...

Full description

Saved in:
Bibliographic Details
Main Authors: Guo-Jiang, Zhou, Yu, Tao, Zhou, Yang, Li-Guo, Wei
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As a promising cathode material for lithium ion battemensionalry of high voltage, spinel LiNi0.5Mn1.5O4 has attracted interest due to its high discharging voltage at 4.7 V and high energy density of 610 Wh kg-1. In this work, LiNi0.5Mn1.5O4 with a new core-multilayer shells structure (LNMO-900) is synthesized successfully by co-precipitation method and shows a better electrochemical performance. The formation of the core-multilayer shells structure is related to the kirkendall effect, the shell maintains structural stability, and improves long cycle performance. Core-multilayer shells structure is also beneficial for transmission of lithium ion, increasing rate performance. The effects of sintering temperature on the performance of LNMO were further investigated. Core-multilayer shells LiNi0.5Mn1.5O4 is synthesized successfully at 900 °C for 12 h uniquely. From the integral calculation of XPS spectra, a higher content of Mn4+ is observed in the outer shell of LNMO-900 compared with other homogeneous solid particles. The discharge specific capacity of LNMO-900 is 129.3 mAh g-1 at 1 C which is superior to others, and after 1000 cycles, LNMO-900 shows capacity retention of 87.9%. The initial capacity of LNMO-900 is 104.9 mAh g-1 at 5 C.
ISSN:2555-0403
2267-1242
DOI:10.1051/e3sconf/202021301011