Loading…
Dynamic model of isothermal moving bed reducer for chemical looping hydrogen production
This paper investigates process modelling and reactor design for the reducer in the chemical looping hydrogen production (CLHP) process. The CLHP process adopts a three-reactor technology that can provide an efficient and sustainable alternative to the current hydrogen production technology via stea...
Saved in:
Published in: | MATEC web of conferences 2023, Vol.377, p.1017 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper investigates process modelling and reactor design for the reducer in the chemical looping hydrogen production (CLHP) process. The CLHP process adopts a three-reactor technology that can provide an efficient and sustainable alternative to the current hydrogen production technology via steam methane reforming (SMR), which suffers from several limitations during industrial operation. CLHP can achieve higher thermal efficiency than SMR and provide a carbon capture and storage (CCS) system. So far, no report on the modelling analysis of the reducer despite its critical dependence on temperature. The modelling study adopts the modified pellet-grain model at the micro-scale and counter-current moving bed model reactor at the reactor level. Simulation results of the gas-solid behavior based on the multi-scale model agree with the literature evidence. Critical information from the model revealed that the oxygen carriers (solids) can attain a desired state, but the syngas remains underutilized. The model simulation further suggests that lowering the gas-solid velocity ratio (Vgs) can substantially promote the syngas conversion. However, the Vgs value must remain above a threshold value (170), defined through the limitation of gas-solid velocities in a moving bed reactor. Since a CCS system requires high purity (>95%) of the product gas, rigorous temperature-pellet size optimization is vital to achieving the target purity while maintaining desired solid state. |
---|---|
ISSN: | 2261-236X 2261-236X |
DOI: | 10.1051/matecconf/202337701017 |