Loading…
On Some Laws of Large Numbers for Uncertain Random Variables
Baoding Liu created uncertainty theory to describe the information represented by human language. In turn, Yuhan Liu founded chance theory for modelling phenomena where both uncertainty and randomness are present. The first theory involves an uncertain measure and variable, whereas the second one in...
Saved in:
Published in: | Symmetry (Basel) 2021-12, Vol.13 (12), p.2258 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Baoding Liu created uncertainty theory to describe the information represented by human language. In turn, Yuhan Liu founded chance theory for modelling phenomena where both uncertainty and randomness are present. The first theory involves an uncertain measure and variable, whereas the second one introduces the notions of a chance measure and an uncertain random variable. Laws of large numbers (LLNs) are important theorems within both theories. In this paper, we prove a law of large numbers (LLN) for uncertain random variables being continuous functions of pairwise independent, identically distributed random variables and regular, independent, identically distributed uncertain variables, which is a generalisation of a previously proved version of LLN, where the independence of random variables was assumed. Moreover, we prove the Marcinkiewicz–Zygmund type LLN in the case of uncertain random variables. The proved version of the Marcinkiewicz–Zygmund type theorem reflects the difference between probability and chance theory. Furthermore, we obtain the Chow type LLN for delayed sums of uncertain random variables and formulate counterparts of the last two theorems for uncertain variables. Finally, we provide illustrative examples of applications of the proved theorems. All the proved theorems can be applied for uncertain random variables being functions of symmetrically or asymmetrically distributed random variables, and symmetrical or asymmetrical uncertain variables. Furthermore, in some special cases, under the assumption of symmetry of the random and uncertain variables, the limits in the first and the third theorem have forms of symmetrical uncertain variables. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym13122258 |