Loading…

Directional Thermodynamic Formalism

The usual thermodynamic formalism is uniform in all directions and, therefore, it is not adapted to study multi-dimensional functions with various directional behaviors. It is based on a scaling function characterized in terms of isotropic Sobolev or Besov-type norms. The purpose of the present pape...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) 2019-06, Vol.11 (6), p.825
Main Authors: Ben Slimane, Mourad Ben, Ben Abid, Moez Ben, Ben Omrane, Ines, Halouani, Borhen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The usual thermodynamic formalism is uniform in all directions and, therefore, it is not adapted to study multi-dimensional functions with various directional behaviors. It is based on a scaling function characterized in terms of isotropic Sobolev or Besov-type norms. The purpose of the present paper was twofold. Firstly, we proved wavelet criteria for a natural extended directional scaling function expressed in terms of directional Sobolev or Besov spaces. Secondly, we performed the directional multifractal formalism, i.e., we computed or estimated directional Hölder spectra, either directly or via some Legendre transforms on either directional scaling function or anisotropic scaling functions. We obtained general upper bounds for directional Hölder spectra. We also showed optimal results for two large classes of examples of deterministic and random anisotropic self-similar tools for possible modeling turbulence (or cascades) and textures in images: Sierpinski cascade functions and fractional Brownian sheets.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym11060825