Loading…

Directional Thermodynamic Formalism

The usual thermodynamic formalism is uniform in all directions and, therefore, it is not adapted to study multi-dimensional functions with various directional behaviors. It is based on a scaling function characterized in terms of isotropic Sobolev or Besov-type norms. The purpose of the present pape...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) 2019-06, Vol.11 (6), p.825
Main Authors: Ben Slimane, Mourad, Ben Abid, Moez, Ben Omrane, Ines, Halouani, Borhen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-1586e4bee30fc10af9e075092b1af77566249071e405255e164d11e2c1ac3b603
cites cdi_FETCH-LOGICAL-c364t-1586e4bee30fc10af9e075092b1af77566249071e405255e164d11e2c1ac3b603
container_end_page
container_issue 6
container_start_page 825
container_title Symmetry (Basel)
container_volume 11
creator Ben Slimane, Mourad
Ben Abid, Moez
Ben Omrane, Ines
Halouani, Borhen
description The usual thermodynamic formalism is uniform in all directions and, therefore, it is not adapted to study multi-dimensional functions with various directional behaviors. It is based on a scaling function characterized in terms of isotropic Sobolev or Besov-type norms. The purpose of the present paper was twofold. Firstly, we proved wavelet criteria for a natural extended directional scaling function expressed in terms of directional Sobolev or Besov spaces. Secondly, we performed the directional multifractal formalism, i.e., we computed or estimated directional Hölder spectra, either directly or via some Legendre transforms on either directional scaling function or anisotropic scaling functions. We obtained general upper bounds for directional Hölder spectra. We also showed optimal results for two large classes of examples of deterministic and random anisotropic self-similar tools for possible modeling turbulence (or cascades) and textures in images: Sierpinski cascade functions and fractional Brownian sheets.
doi_str_mv 10.3390/sym11060825
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e6ed4135879f431691e43173b50b1492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e6ed4135879f431691e43173b50b1492</doaj_id><sourcerecordid>2550258041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-1586e4bee30fc10af9e075092b1af77566249071e405255e164d11e2c1ac3b603</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsNSe_AKFHiU6s_-SPUq1Wih4qedls5loStKtu-kh395oRTqXGR4zv8c8xm4R7oUw8JCGDhE0FFxdsAmHXGSFMfLybL5ms5R2MJYCJTVM2OKpieT7JuxdO99-UuxCNexd1_j5KsTOtU3qbthV7dpEs78-Ze-r5-3yNdu8vayXj5vMCy37DFWhSZZEAmqP4GpDkCswvERX57nSmksDOZIExZUi1LJCJO7ReVFqEFO2PnGr4Hb2EJvOxcEG19hfIcQP62Lf-JYsaaokClXkppYCtRmpAnNRKihRGj6yFifWIYavI6Xe7sIxjk8mO3oDVwWM91N2d9ryMaQUqf53RbA_odqzUMU3r8Jl4g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550258041</pqid></control><display><type>article</type><title>Directional Thermodynamic Formalism</title><source>Publicly Available Content Database</source><creator>Ben Slimane, Mourad ; Ben Abid, Moez ; Ben Omrane, Ines ; Halouani, Borhen</creator><creatorcontrib>Ben Slimane, Mourad ; Ben Abid, Moez ; Ben Omrane, Ines ; Halouani, Borhen</creatorcontrib><description>The usual thermodynamic formalism is uniform in all directions and, therefore, it is not adapted to study multi-dimensional functions with various directional behaviors. It is based on a scaling function characterized in terms of isotropic Sobolev or Besov-type norms. The purpose of the present paper was twofold. Firstly, we proved wavelet criteria for a natural extended directional scaling function expressed in terms of directional Sobolev or Besov spaces. Secondly, we performed the directional multifractal formalism, i.e., we computed or estimated directional Hölder spectra, either directly or via some Legendre transforms on either directional scaling function or anisotropic scaling functions. We obtained general upper bounds for directional Hölder spectra. We also showed optimal results for two large classes of examples of deterministic and random anisotropic self-similar tools for possible modeling turbulence (or cascades) and textures in images: Sierpinski cascade functions and fractional Brownian sheets.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym11060825</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>anisotropic hölder regularity ; anisotropic scaling function ; Behavior ; directional hölder regularity ; directional multifractal formalism ; directional scaling function ; Formalism ; fractional brownian sheets ; Function space ; Heuristic ; Norms ; Partial differential equations ; Scaling ; Self-similarity ; sierpinski cascade functions ; Upper bounds ; wavelet bases ; Wavelet transforms</subject><ispartof>Symmetry (Basel), 2019-06, Vol.11 (6), p.825</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-1586e4bee30fc10af9e075092b1af77566249071e405255e164d11e2c1ac3b603</citedby><cites>FETCH-LOGICAL-c364t-1586e4bee30fc10af9e075092b1af77566249071e405255e164d11e2c1ac3b603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2550258041/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2550258041?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Ben Slimane, Mourad</creatorcontrib><creatorcontrib>Ben Abid, Moez</creatorcontrib><creatorcontrib>Ben Omrane, Ines</creatorcontrib><creatorcontrib>Halouani, Borhen</creatorcontrib><title>Directional Thermodynamic Formalism</title><title>Symmetry (Basel)</title><description>The usual thermodynamic formalism is uniform in all directions and, therefore, it is not adapted to study multi-dimensional functions with various directional behaviors. It is based on a scaling function characterized in terms of isotropic Sobolev or Besov-type norms. The purpose of the present paper was twofold. Firstly, we proved wavelet criteria for a natural extended directional scaling function expressed in terms of directional Sobolev or Besov spaces. Secondly, we performed the directional multifractal formalism, i.e., we computed or estimated directional Hölder spectra, either directly or via some Legendre transforms on either directional scaling function or anisotropic scaling functions. We obtained general upper bounds for directional Hölder spectra. We also showed optimal results for two large classes of examples of deterministic and random anisotropic self-similar tools for possible modeling turbulence (or cascades) and textures in images: Sierpinski cascade functions and fractional Brownian sheets.</description><subject>anisotropic hölder regularity</subject><subject>anisotropic scaling function</subject><subject>Behavior</subject><subject>directional hölder regularity</subject><subject>directional multifractal formalism</subject><subject>directional scaling function</subject><subject>Formalism</subject><subject>fractional brownian sheets</subject><subject>Function space</subject><subject>Heuristic</subject><subject>Norms</subject><subject>Partial differential equations</subject><subject>Scaling</subject><subject>Self-similarity</subject><subject>sierpinski cascade functions</subject><subject>Upper bounds</subject><subject>wavelet bases</subject><subject>Wavelet transforms</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE9Lw0AQxRdRsNSe_AKFHiU6s_-SPUq1Wih4qedls5loStKtu-kh395oRTqXGR4zv8c8xm4R7oUw8JCGDhE0FFxdsAmHXGSFMfLybL5ms5R2MJYCJTVM2OKpieT7JuxdO99-UuxCNexd1_j5KsTOtU3qbthV7dpEs78-Ze-r5-3yNdu8vayXj5vMCy37DFWhSZZEAmqP4GpDkCswvERX57nSmksDOZIExZUi1LJCJO7ReVFqEFO2PnGr4Hb2EJvOxcEG19hfIcQP62Lf-JYsaaokClXkppYCtRmpAnNRKihRGj6yFifWIYavI6Xe7sIxjk8mO3oDVwWM91N2d9ryMaQUqf53RbA_odqzUMU3r8Jl4g</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Ben Slimane, Mourad</creator><creator>Ben Abid, Moez</creator><creator>Ben Omrane, Ines</creator><creator>Halouani, Borhen</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20190601</creationdate><title>Directional Thermodynamic Formalism</title><author>Ben Slimane, Mourad ; Ben Abid, Moez ; Ben Omrane, Ines ; Halouani, Borhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-1586e4bee30fc10af9e075092b1af77566249071e405255e164d11e2c1ac3b603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>anisotropic hölder regularity</topic><topic>anisotropic scaling function</topic><topic>Behavior</topic><topic>directional hölder regularity</topic><topic>directional multifractal formalism</topic><topic>directional scaling function</topic><topic>Formalism</topic><topic>fractional brownian sheets</topic><topic>Function space</topic><topic>Heuristic</topic><topic>Norms</topic><topic>Partial differential equations</topic><topic>Scaling</topic><topic>Self-similarity</topic><topic>sierpinski cascade functions</topic><topic>Upper bounds</topic><topic>wavelet bases</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben Slimane, Mourad</creatorcontrib><creatorcontrib>Ben Abid, Moez</creatorcontrib><creatorcontrib>Ben Omrane, Ines</creatorcontrib><creatorcontrib>Halouani, Borhen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben Slimane, Mourad</au><au>Ben Abid, Moez</au><au>Ben Omrane, Ines</au><au>Halouani, Borhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directional Thermodynamic Formalism</atitle><jtitle>Symmetry (Basel)</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>11</volume><issue>6</issue><spage>825</spage><pages>825-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>The usual thermodynamic formalism is uniform in all directions and, therefore, it is not adapted to study multi-dimensional functions with various directional behaviors. It is based on a scaling function characterized in terms of isotropic Sobolev or Besov-type norms. The purpose of the present paper was twofold. Firstly, we proved wavelet criteria for a natural extended directional scaling function expressed in terms of directional Sobolev or Besov spaces. Secondly, we performed the directional multifractal formalism, i.e., we computed or estimated directional Hölder spectra, either directly or via some Legendre transforms on either directional scaling function or anisotropic scaling functions. We obtained general upper bounds for directional Hölder spectra. We also showed optimal results for two large classes of examples of deterministic and random anisotropic self-similar tools for possible modeling turbulence (or cascades) and textures in images: Sierpinski cascade functions and fractional Brownian sheets.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym11060825</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-8994
ispartof Symmetry (Basel), 2019-06, Vol.11 (6), p.825
issn 2073-8994
2073-8994
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_e6ed4135879f431691e43173b50b1492
source Publicly Available Content Database
subjects anisotropic hölder regularity
anisotropic scaling function
Behavior
directional hölder regularity
directional multifractal formalism
directional scaling function
Formalism
fractional brownian sheets
Function space
Heuristic
Norms
Partial differential equations
Scaling
Self-similarity
sierpinski cascade functions
Upper bounds
wavelet bases
Wavelet transforms
title Directional Thermodynamic Formalism
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directional%20Thermodynamic%20Formalism&rft.jtitle=Symmetry%20(Basel)&rft.au=Ben%20Slimane,%20Mourad&rft.date=2019-06-01&rft.volume=11&rft.issue=6&rft.spage=825&rft.pages=825-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym11060825&rft_dat=%3Cproquest_doaj_%3E2550258041%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-1586e4bee30fc10af9e075092b1af77566249071e405255e164d11e2c1ac3b603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550258041&rft_id=info:pmid/&rfr_iscdi=true