Loading…
Directional Thermodynamic Formalism
The usual thermodynamic formalism is uniform in all directions and, therefore, it is not adapted to study multi-dimensional functions with various directional behaviors. It is based on a scaling function characterized in terms of isotropic Sobolev or Besov-type norms. The purpose of the present pape...
Saved in:
Published in: | Symmetry (Basel) 2019-06, Vol.11 (6), p.825 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-1586e4bee30fc10af9e075092b1af77566249071e405255e164d11e2c1ac3b603 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-1586e4bee30fc10af9e075092b1af77566249071e405255e164d11e2c1ac3b603 |
container_end_page | |
container_issue | 6 |
container_start_page | 825 |
container_title | Symmetry (Basel) |
container_volume | 11 |
creator | Ben Slimane, Mourad Ben Abid, Moez Ben Omrane, Ines Halouani, Borhen |
description | The usual thermodynamic formalism is uniform in all directions and, therefore, it is not adapted to study multi-dimensional functions with various directional behaviors. It is based on a scaling function characterized in terms of isotropic Sobolev or Besov-type norms. The purpose of the present paper was twofold. Firstly, we proved wavelet criteria for a natural extended directional scaling function expressed in terms of directional Sobolev or Besov spaces. Secondly, we performed the directional multifractal formalism, i.e., we computed or estimated directional Hölder spectra, either directly or via some Legendre transforms on either directional scaling function or anisotropic scaling functions. We obtained general upper bounds for directional Hölder spectra. We also showed optimal results for two large classes of examples of deterministic and random anisotropic self-similar tools for possible modeling turbulence (or cascades) and textures in images: Sierpinski cascade functions and fractional Brownian sheets. |
doi_str_mv | 10.3390/sym11060825 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_e6ed4135879f431691e43173b50b1492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e6ed4135879f431691e43173b50b1492</doaj_id><sourcerecordid>2550258041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-1586e4bee30fc10af9e075092b1af77566249071e405255e164d11e2c1ac3b603</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsNSe_AKFHiU6s_-SPUq1Wih4qedls5loStKtu-kh395oRTqXGR4zv8c8xm4R7oUw8JCGDhE0FFxdsAmHXGSFMfLybL5ms5R2MJYCJTVM2OKpieT7JuxdO99-UuxCNexd1_j5KsTOtU3qbthV7dpEs78-Ze-r5-3yNdu8vayXj5vMCy37DFWhSZZEAmqP4GpDkCswvERX57nSmksDOZIExZUi1LJCJO7ReVFqEFO2PnGr4Hb2EJvOxcEG19hfIcQP62Lf-JYsaaokClXkppYCtRmpAnNRKihRGj6yFifWIYavI6Xe7sIxjk8mO3oDVwWM91N2d9ryMaQUqf53RbA_odqzUMU3r8Jl4g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550258041</pqid></control><display><type>article</type><title>Directional Thermodynamic Formalism</title><source>Publicly Available Content Database</source><creator>Ben Slimane, Mourad ; Ben Abid, Moez ; Ben Omrane, Ines ; Halouani, Borhen</creator><creatorcontrib>Ben Slimane, Mourad ; Ben Abid, Moez ; Ben Omrane, Ines ; Halouani, Borhen</creatorcontrib><description>The usual thermodynamic formalism is uniform in all directions and, therefore, it is not adapted to study multi-dimensional functions with various directional behaviors. It is based on a scaling function characterized in terms of isotropic Sobolev or Besov-type norms. The purpose of the present paper was twofold. Firstly, we proved wavelet criteria for a natural extended directional scaling function expressed in terms of directional Sobolev or Besov spaces. Secondly, we performed the directional multifractal formalism, i.e., we computed or estimated directional Hölder spectra, either directly or via some Legendre transforms on either directional scaling function or anisotropic scaling functions. We obtained general upper bounds for directional Hölder spectra. We also showed optimal results for two large classes of examples of deterministic and random anisotropic self-similar tools for possible modeling turbulence (or cascades) and textures in images: Sierpinski cascade functions and fractional Brownian sheets.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym11060825</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>anisotropic hölder regularity ; anisotropic scaling function ; Behavior ; directional hölder regularity ; directional multifractal formalism ; directional scaling function ; Formalism ; fractional brownian sheets ; Function space ; Heuristic ; Norms ; Partial differential equations ; Scaling ; Self-similarity ; sierpinski cascade functions ; Upper bounds ; wavelet bases ; Wavelet transforms</subject><ispartof>Symmetry (Basel), 2019-06, Vol.11 (6), p.825</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-1586e4bee30fc10af9e075092b1af77566249071e405255e164d11e2c1ac3b603</citedby><cites>FETCH-LOGICAL-c364t-1586e4bee30fc10af9e075092b1af77566249071e405255e164d11e2c1ac3b603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2550258041/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2550258041?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Ben Slimane, Mourad</creatorcontrib><creatorcontrib>Ben Abid, Moez</creatorcontrib><creatorcontrib>Ben Omrane, Ines</creatorcontrib><creatorcontrib>Halouani, Borhen</creatorcontrib><title>Directional Thermodynamic Formalism</title><title>Symmetry (Basel)</title><description>The usual thermodynamic formalism is uniform in all directions and, therefore, it is not adapted to study multi-dimensional functions with various directional behaviors. It is based on a scaling function characterized in terms of isotropic Sobolev or Besov-type norms. The purpose of the present paper was twofold. Firstly, we proved wavelet criteria for a natural extended directional scaling function expressed in terms of directional Sobolev or Besov spaces. Secondly, we performed the directional multifractal formalism, i.e., we computed or estimated directional Hölder spectra, either directly or via some Legendre transforms on either directional scaling function or anisotropic scaling functions. We obtained general upper bounds for directional Hölder spectra. We also showed optimal results for two large classes of examples of deterministic and random anisotropic self-similar tools for possible modeling turbulence (or cascades) and textures in images: Sierpinski cascade functions and fractional Brownian sheets.</description><subject>anisotropic hölder regularity</subject><subject>anisotropic scaling function</subject><subject>Behavior</subject><subject>directional hölder regularity</subject><subject>directional multifractal formalism</subject><subject>directional scaling function</subject><subject>Formalism</subject><subject>fractional brownian sheets</subject><subject>Function space</subject><subject>Heuristic</subject><subject>Norms</subject><subject>Partial differential equations</subject><subject>Scaling</subject><subject>Self-similarity</subject><subject>sierpinski cascade functions</subject><subject>Upper bounds</subject><subject>wavelet bases</subject><subject>Wavelet transforms</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE9Lw0AQxRdRsNSe_AKFHiU6s_-SPUq1Wih4qedls5loStKtu-kh395oRTqXGR4zv8c8xm4R7oUw8JCGDhE0FFxdsAmHXGSFMfLybL5ms5R2MJYCJTVM2OKpieT7JuxdO99-UuxCNexd1_j5KsTOtU3qbthV7dpEs78-Ze-r5-3yNdu8vayXj5vMCy37DFWhSZZEAmqP4GpDkCswvERX57nSmksDOZIExZUi1LJCJO7ReVFqEFO2PnGr4Hb2EJvOxcEG19hfIcQP62Lf-JYsaaokClXkppYCtRmpAnNRKihRGj6yFifWIYavI6Xe7sIxjk8mO3oDVwWM91N2d9ryMaQUqf53RbA_odqzUMU3r8Jl4g</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Ben Slimane, Mourad</creator><creator>Ben Abid, Moez</creator><creator>Ben Omrane, Ines</creator><creator>Halouani, Borhen</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20190601</creationdate><title>Directional Thermodynamic Formalism</title><author>Ben Slimane, Mourad ; Ben Abid, Moez ; Ben Omrane, Ines ; Halouani, Borhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-1586e4bee30fc10af9e075092b1af77566249071e405255e164d11e2c1ac3b603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>anisotropic hölder regularity</topic><topic>anisotropic scaling function</topic><topic>Behavior</topic><topic>directional hölder regularity</topic><topic>directional multifractal formalism</topic><topic>directional scaling function</topic><topic>Formalism</topic><topic>fractional brownian sheets</topic><topic>Function space</topic><topic>Heuristic</topic><topic>Norms</topic><topic>Partial differential equations</topic><topic>Scaling</topic><topic>Self-similarity</topic><topic>sierpinski cascade functions</topic><topic>Upper bounds</topic><topic>wavelet bases</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben Slimane, Mourad</creatorcontrib><creatorcontrib>Ben Abid, Moez</creatorcontrib><creatorcontrib>Ben Omrane, Ines</creatorcontrib><creatorcontrib>Halouani, Borhen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben Slimane, Mourad</au><au>Ben Abid, Moez</au><au>Ben Omrane, Ines</au><au>Halouani, Borhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directional Thermodynamic Formalism</atitle><jtitle>Symmetry (Basel)</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>11</volume><issue>6</issue><spage>825</spage><pages>825-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>The usual thermodynamic formalism is uniform in all directions and, therefore, it is not adapted to study multi-dimensional functions with various directional behaviors. It is based on a scaling function characterized in terms of isotropic Sobolev or Besov-type norms. The purpose of the present paper was twofold. Firstly, we proved wavelet criteria for a natural extended directional scaling function expressed in terms of directional Sobolev or Besov spaces. Secondly, we performed the directional multifractal formalism, i.e., we computed or estimated directional Hölder spectra, either directly or via some Legendre transforms on either directional scaling function or anisotropic scaling functions. We obtained general upper bounds for directional Hölder spectra. We also showed optimal results for two large classes of examples of deterministic and random anisotropic self-similar tools for possible modeling turbulence (or cascades) and textures in images: Sierpinski cascade functions and fractional Brownian sheets.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym11060825</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-8994 |
ispartof | Symmetry (Basel), 2019-06, Vol.11 (6), p.825 |
issn | 2073-8994 2073-8994 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_e6ed4135879f431691e43173b50b1492 |
source | Publicly Available Content Database |
subjects | anisotropic hölder regularity anisotropic scaling function Behavior directional hölder regularity directional multifractal formalism directional scaling function Formalism fractional brownian sheets Function space Heuristic Norms Partial differential equations Scaling Self-similarity sierpinski cascade functions Upper bounds wavelet bases Wavelet transforms |
title | Directional Thermodynamic Formalism |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directional%20Thermodynamic%20Formalism&rft.jtitle=Symmetry%20(Basel)&rft.au=Ben%20Slimane,%20Mourad&rft.date=2019-06-01&rft.volume=11&rft.issue=6&rft.spage=825&rft.pages=825-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym11060825&rft_dat=%3Cproquest_doaj_%3E2550258041%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-1586e4bee30fc10af9e075092b1af77566249071e405255e164d11e2c1ac3b603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550258041&rft_id=info:pmid/&rfr_iscdi=true |