Loading…
Mapping Sonification for Perception and Action in Motor Skill Learning
With sonification, novices can practice with an enhanced, more responsive perceptual-motor workspace (defined as the emergent resources and constraints of organism and environment in the context of a task, which are perceptually available through dynamic interaction: see Newell et al., 1991), which...
Saved in:
Published in: | Frontiers in neuroscience 2017-08, Vol.11, p.463-463 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With sonification, novices can practice with an enhanced, more responsive perceptual-motor workspace (defined as the emergent resources and constraints of organism and environment in the context of a task, which are perceptually available through dynamic interaction: see Newell et al., 1991), which employs sound as a helpful constraint on action. Older reviews of KP/KR research (Adams, 1971; Salmoni et al., 1984) show that motor skill learning was explicitly conceptualized as a knowledge and memory-based, problem-solving task, soluble by the application of explicit knowledge and rules (typically, coach-provided guidance, or scores/graphs of performance and error). Thomas and Thomas (1994) have argued that the traditional knowledge-based approach to motor skill learning underplays the role of selective sensitivity to perceptual information in skilled performance, catering mostly to the earliest “cognitive stage” of learning (Fitts and Posner, 1967). Effenberg and colleagues (Vinken et al., 2013; Effenberg et al., 2016) argue similarly that a “direct” approach to mapping in which sound quality perceptually correlates with the dynamics of ongoing movement is most appropriate for motor skill learning. |
---|---|
ISSN: | 1662-4548 1662-453X 1662-453X |
DOI: | 10.3389/fnins.2017.00463 |