Loading…
Single-molecule electrical contacts on silicon electrodes under ambient conditions
The ultimate goal in molecular electronics is to use individual molecules as the active electronic component of a real-world sturdy device. For this concept to become reality, it will require the field of single-molecule electronics to shift towards the semiconducting platform of the current microel...
Saved in:
Published in: | Nature communications 2017-04, Vol.8 (1), p.15056-15056, Article 15056 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The ultimate goal in molecular electronics is to use individual molecules as the active electronic component of a real-world sturdy device. For this concept to become reality, it will require the field of single-molecule electronics to shift towards the semiconducting platform of the current microelectronics industry. Here, we report silicon-based single-molecule contacts that are mechanically and electrically stable under ambient conditions. The single-molecule contacts are prepared on silicon electrodes using the scanning tunnelling microscopy break-junction approach using a top metallic probe. The molecular wires show remarkable current–voltage reproducibility, as compared to an open silicon/nano-gap/metal junction, with current rectification ratios exceeding 4,000 when a low-doped silicon is used. The extension of the single-molecule junction approach to a silicon substrate contributes to the next level of miniaturization of electronic components and it is anticipated it will pave the way to a new class of robust single-molecule circuits.
The next level of miniaturization of electronic circuits calls for a connection between current single-molecule and traditional semiconductor processing technologies. Here, the authors show a method to prepare metal/molecule/silicon diodes that present high current rectification ratios exceeding 4,000. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms15056 |