Loading…
Hybrid Dilated and Recursive Recurrent Convolution Network for Time-Domain Speech Enhancement
In this paper, we propose a fully convolutional neural network based on recursive recurrent convolution for monaural speech enhancement in the time domain. The proposed network is an encoder-decoder structure using a series of hybrid dilated modules (HDM). The encoder creates low-dimensional feature...
Saved in:
Published in: | Applied sciences 2022-04, Vol.12 (7), p.3461 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we propose a fully convolutional neural network based on recursive recurrent convolution for monaural speech enhancement in the time domain. The proposed network is an encoder-decoder structure using a series of hybrid dilated modules (HDM). The encoder creates low-dimensional features of a noisy input frame. In the HDM, the dilated convolution is used to expand the receptive field of the network model. In contrast, the standard convolution is used to make up for the under-utilized local information of the dilated convolution. The decoder is used to reconstruct enhanced frames. The recursive recurrent convolutional network uses GRU to solve the problem of multiple training parameters and complex structures. State-of-the-art results are achieved on two commonly used speech datasets. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app12073461 |