Loading…
Contact-force monitoring increases accuracy of right ventricular voltage mapping avoiding “false scar” detection in patients with no evidence of structural heart disease
Electroanatomical mapping (EAM) could increase cardiac magnetic resonance imaging (CMR) sensitivity in detecting ventricular scar. Possible bias may be scar over-estimation due to inadequate tissue contact. Aim of the study is to evaluate contact-force monitoring influence during EAM, in patients wi...
Saved in:
Published in: | Indian pacing and electrophysiology journal 2020-11, Vol.20 (6), p.243-249 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electroanatomical mapping (EAM) could increase cardiac magnetic resonance imaging (CMR) sensitivity in detecting ventricular scar. Possible bias may be scar over-estimation due to inadequate tissue contact. Aim of the study is to evaluate contact-force monitoring influence during EAM, in patients with idiopathic right ventricular arrhythmias.
20 pts (13 M; 43 ± 12 y) with idiopathic right ventricular outflow tract (RVOT) arrhythmias and no structural abnormalities were submitted to Smarttouch catheter Carto3 EAM. Native maps included points collected without considering contact-force. EAM scar was defined as area ≥1 cm2 including at least 3 adjacent points with signal amplitude (bipolar |
---|---|
ISSN: | 0972-6292 0972-6292 |
DOI: | 10.1016/j.ipej.2020.07.004 |