Loading…

Quintic B-spline collocation method for numerical solution of free vibration of tapered Euler-Bernoulli beam on variable Winkler foundation

The collocation method is the method for the numerical solution of integral equations and partial and ordinary differential equations. The main idea of this method is to choose a number of points in the domain and a finite-dimensional space of candidate solutions. So, that solution satisfies the govern...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Mechanical Engineering and Sciences 2021-06, Vol.15 (2), p.8193-8204
Main Author: Ghannadiasl, Amin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The collocation method is the method for the numerical solution of integral equations and partial and ordinary differential equations. The main idea of this method is to choose a number of points in the domain and a finite-dimensional space of candidate solutions. So, that solution satisfies the governing equation at the collocation points. The current paper involves developing, and a comprehensive, step-by step procedure for applying the collocation method to the numerical solution of free vibration of tapered Euler-Bernoulli beam. In this stusy, it is assumed the beam rested on variable Winkler foundation. The simplicity of this approximation method makes it an ideal candidate for computer implementation. Finally, the numerical examples are introduced to show efficiency and applicability of quintic B-spline collocation method. Numerical results are demonstrated that quintic B-spline collocation method is very competitive for numerical solution of frequency analysis of tapered beam on variable elastic foundation.
ISSN:2289-4659
2231-8380
DOI:10.15282/jmes.15.2.2021.18.0643