Loading…
Arc Discharge–Induced Ignition of Combustibles Placed on a Damaged AC Power Supply Cord
One of the major causes of unintentional electrical fires is short circuit of an electrically and/or mechanically damaged alternating power supply cord. Detecting of such an event and interrupting the power supply may be beyond the capability of a conventional electro-mechanical circuit breaker. A l...
Saved in:
Published in: | Energies (Basel) 2020-02, Vol.13 (3), p.681 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One of the major causes of unintentional electrical fires is short circuit of an electrically and/or mechanically damaged alternating power supply cord. Detecting of such an event and interrupting the power supply may be beyond the capability of a conventional electro-mechanical circuit breaker. A lot of research papers have been published related to arc fault of wiring and its detection method. Furthermore, arc fault circuit interrupters have been put into practical use. The objective of the present paper is to understand fault of damaged power supply cord under two selected situations observed in practical use or considered suitable to understand fire ignition. Using two kinds of samples similar to but different from samples prescribed in UL1699 standard, the ignition mechanism of combustibles is discussed based on the results of laboratory experiments. The findings herein underscore the important role of the arc in the ignition of combustibles that are placed on the damaged part of a power supply cord, which is normally followed by a short circuit of broken element conductors or breakage of intact element conductors. Moreover, a possible arc detection feature in the two situations is discussed based on a distorted voltage waveform. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en13030681 |