Loading…

Effect of Gambogic Acid–Loaded Porous-Lipid/PLGA Microbubbles in Combination With Ultrasound-Triggered Microbubble Destruction on Human Glioma

Gambogic acid (GA) is a highly effective antitumor agent, and it is used for the treatment of a wide range of cancers. It is challenging to deliver drugs to the central nervous system due to the inability of GA to cross the blood–brain barrier (BBB). Studies have shown that ultrasound-targeted micro...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in bioengineering and biotechnology 2021-09, Vol.9, p.711787-711787
Main Authors: Wang, Feng, Dong, Lei, Wei, Xixi, Wang, Yongling, Chang, Liansheng, Wu, Hongwei, Liu, Shuyuan, Chang, Yuqiao, Yin, Yaling, Luo, Xiaoqiu, Jia, Xiaojian, Yan, Fei, Li, Nana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Gambogic acid (GA) is a highly effective antitumor agent, and it is used for the treatment of a wide range of cancers. It is challenging to deliver drugs to the central nervous system due to the inability of GA to cross the blood–brain barrier (BBB). Studies have shown that ultrasound-targeted microbubble destruction can be used for transient and reversible BBB disruption, significantly facilitating intracerebral drug delivery. We first prepared GA–loaded porous-lipid microbubbles (GA porous-lipid/PLGA MBs), and an in vitro BBB model was established. The cell viability was detected by CCK-8 assay and flow cytometry. The results indicate that U251 human glioma cells were killed by focused ultrasound (FUS) combined with GA/PLGA microbubbles. FUS combined with GA/PLGA microbubbles was capable of locally and transiently enhancing the permeability of BBB under certain conditions. This conformational change allows the release of GA to extracellular space. This study provides novel targets for the treatment of glioma.
ISSN:2296-4185
2296-4185
DOI:10.3389/fbioe.2021.711787