Loading…
On the stability of a multiplicative type sum form functional equation
In this paper we intend to discuss the stability of a sum form functional equation \begin{align*} \sum\limits\limits^n_{i=1}\sum\limits\limits^m_{j=1}f\left(p_iq_j\right)=\sum\limits\limits^n_{i=1}k\left(p_i\right)\sum\limits\limits^m_{j=1}q^{\beta }_j \end{align*} where f, k are real valued mapping...
Saved in:
Published in: | Ratio mathematica 2021-12, Vol.41, p.7-18 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we intend to discuss the stability of a sum form functional equation \begin{align*} \sum\limits\limits^n_{i=1}\sum\limits\limits^m_{j=1}f\left(p_iq_j\right)=\sum\limits\limits^n_{i=1}k\left(p_i\right)\sum\limits\limits^m_{j=1}q^{\beta }_j \end{align*} where f, k are real valued mappings each having the domain I; (p_1,\ldots,p_n)∈\Gamma_n, (q_1,\ldots,q_m)\in\Gamma_m; n\ge 3, m\ge 3 are fixed integers and \beta is a fixed positive real power different from 1 satisfying the conventions 0^{\beta }:= 0 and 1^\beta:=1. |
---|---|
ISSN: | 1592-7415 2282-8214 |
DOI: | 10.23755/rm.v41i0.690 |