Loading…

Structures and reaction rates of the gaseous oxidation of SO2 by an O3−(H2O)0-5 cluster - a density functional theory investigation

Based on density functional theory calculations we present a study of the gaseous oxidation of SO2 to SO3 by an anionic O3- (H2 O)n cluster, n = 0-5. The configurations of the most relevant reactants, transition states, and products are discussed and compared to previous findings. Two different clas...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics 2012-04, Vol.12 (8), p.3639-3652
Main Authors: Bork, N, Kurtén, T, Enghoff, M B, Peder sen, J O. P, Mikkelsen, K V, Svensmark, H
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Based on density functional theory calculations we present a study of the gaseous oxidation of SO2 to SO3 by an anionic O3- (H2 O)n cluster, n = 0-5. The configurations of the most relevant reactants, transition states, and products are discussed and compared to previous findings. Two different classes of transition states have been identified. One class is characterised by strong networks of hydrogen bonds, very similar to the reactant complexes. The other class is characterised by sparser structures of hydration water and is stabilised by high entropy. At temperatures relevant for atmospheric chemistry, the most energetically favourable class of transition states vary with the number of water molecules attached. A kinetic model is utilised, taking into account the most likely outcomes of the initial SO2 O3- (H2 O)n collision complexes. This model shows that the reaction takes place at collision rates regardless of the number of water molecules involved. A lifetime analysis of the collision complexes supports this conclusion. Hereafter, the thermodynamics of water and O2 condensation and evaporation from the product SO3- O2 (H2 O)n cluster is considered and the final products are predicted to be O2 SO3- and O2 SO3- (H2 O)1 . The low degree of hydration is rationalised through a charge analysis of the relevant complexes. Finally, the thermodynamics of a few relevant reactions of the O2 SO3- and O2 SO3- (H2 O)1 complexes are considered.
ISSN:1680-7316
1680-7324
DOI:10.5194/acp-12-3639-2012