Loading…
Ground State Solutions for a Class of Fractional Differential Equations with Dirichlet Boundary Value Condition
In this paper, we apply the method of the Nehari manifold to study the fractional differential equation (d/dt)((1/2) 0Dt-β(u′(t))+(1/2) tDT-β(u′(t)))= f(t,u(t)), a.e. t∈[0,T], and u0=uT=0, where 0Dt-β, tDT-β are the left and right Riemann-Liouville fractional integrals of order 0≤β
Saved in:
Published in: | Abstract and Applied Analysis 2014-01, Vol.2014 (2014), p.636-642 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we apply the method of the Nehari manifold to study the fractional differential equation (d/dt)((1/2) 0Dt-β(u′(t))+(1/2) tDT-β(u′(t)))= f(t,u(t)), a.e. t∈[0,T], and u0=uT=0, where 0Dt-β, tDT-β are the left and right Riemann-Liouville fractional integrals of order 0≤β |
---|---|
ISSN: | 1085-3375 1687-0409 |
DOI: | 10.1155/2014/958420 |