Loading…

Ground State Solutions for a Class of Fractional Differential Equations with Dirichlet Boundary Value Condition

In this paper, we apply the method of the Nehari manifold to study the fractional differential equation (d/dt)((1/2) 0Dt-β(u′(t))+(1/2) tDT-β(u′(t)))= f(t,u(t)), a.e. t∈[0,T], and u0=uT=0, where 0Dt-β, tDT-β are the left and right Riemann-Liouville fractional integrals of order 0≤β

Saved in:
Bibliographic Details
Published in:Abstract and Applied Analysis 2014-01, Vol.2014 (2014), p.636-642
Main Authors: Hu, Zhigang, Liu, Jiaying, Liu, Wenbin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we apply the method of the Nehari manifold to study the fractional differential equation (d/dt)((1/2) 0Dt-β(u′(t))+(1/2) tDT-β(u′(t)))= f(t,u(t)), a.e. t∈[0,T], and u0=uT=0, where 0Dt-β, tDT-β are the left and right Riemann-Liouville fractional integrals of order 0≤β
ISSN:1085-3375
1687-0409
DOI:10.1155/2014/958420