Loading…
Subgroups of adult-onset diabetes: a data-driven cluster analysis in a Ghanaian population
Adult-onset diabetes mellitus (here: aDM) is not a uniform disease entity. In European populations, five diabetes subgroups have been identified by cluster analysis using simple clinical variables; these may elucidate diabetes aetiology and disease prognosis. We aimed at reproducing these subgroups...
Saved in:
Published in: | Scientific reports 2023-07, Vol.13 (1), p.10756-10756, Article 10756 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Adult-onset diabetes mellitus (here: aDM) is not a uniform disease entity. In European populations, five diabetes subgroups have been identified by cluster analysis using simple clinical variables; these may elucidate diabetes aetiology and disease prognosis. We aimed at reproducing these subgroups among Ghanaians with aDM, and establishing their importance for diabetic complications in different health system contexts. We used data of 541 Ghanaians with aDM (age: 25–70 years; male sex: 44%) from the multi-center, cross-sectional Research on Obesity and Diabetes among African Migrants (RODAM) Study. Adult-onset DM was defined as fasting plasma glucose (FPG) ≥ 7.0 mmol/L, documented use of glucose-lowering medication or self-reported diabetes, and age of onset ≥ 18 years. We derived subgroups by cluster analysis using (i) a previously published set of variables: age at diabetes onset, HbA1c, body mass index, HOMA-beta, HOMA-IR, positivity of glutamic acid decarboxylase autoantibodies (GAD65Ab), and (ii) Ghana-specific variables: age at onset, waist circumference, FPG, and fasting insulin. For each subgroup, we calculated the clinical, treatment-related and morphometric characteristics, and the proportions of objectively measured and self-reported diabetic complications. We reproduced the five subgroups: cluster 1 (obesity-related, 73%) and cluster 5 (insulin-resistant, 5%) with no dominant diabetic complication patterns; cluster 2 (age-related, 10%) characterized by the highest proportions of coronary artery disease (CAD, 18%) and stroke (13%); cluster 3 (autoimmune-related, 5%) showing the highest proportions of kidney dysfunction (40%) and peripheral artery disease (PAD, 14%); and cluster 4 (insulin-deficient, 7%) characterized by the highest proportion of retinopathy (14%). The second approach yielded four subgroups: obesity- and age-related (68%) characterized by the highest proportion of CAD (9%); body fat-related and insulin-resistant (18%) showing the highest proportions of PAD (6%) and stroke (5%); malnutrition-related (8%) exhibiting the lowest mean waist circumference and the highest proportion of retinopathy (20%); and ketosis-prone (6%) with the highest proportion of kidney dysfunction (30%) and urinary ketones (6%). With the same set of clinical variables, the previously published aDM subgroups can largely be reproduced by cluster analysis in this Ghanaian population. This method may generate in-depth understanding of the aetiology and prognosi |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-37494-2 |