Loading…
A Rational Deconstruction of Landin's SECD Machine with the J Operator
Landin's SECD machine was the first abstract machine for applicative expressions, i.e., functional programs. Landin's J operator was the first control operator for functional languages, and was specified by an extension of the SECD machine. We present a family of evaluation functions corre...
Saved in:
Published in: | Logical methods in computer science 2008-11, Vol.4, Issue 4 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Landin's SECD machine was the first abstract machine for applicative
expressions, i.e., functional programs. Landin's J operator was the first
control operator for functional languages, and was specified by an extension of
the SECD machine. We present a family of evaluation functions corresponding to
this extension of the SECD machine, using a series of elementary
transformations (transformation into continu-ation-passing style (CPS) and
defunctionalization, chiefly) and their left inverses (transformation into
direct style and refunctionalization). To this end, we modernize the SECD
machine into a bisimilar one that operates in lockstep with the original one
but that (1) does not use a data stack and (2) uses the caller-save rather than
the callee-save convention for environments. We also identify that the dump
component of the SECD machine is managed in a callee-save way. The caller-save
counterpart of the modernized SECD machine precisely corresponds to Thielecke's
double-barrelled continuations and to Felleisen's encoding of J in terms of
call/cc. We then variously characterize the J operator in terms of CPS and in
terms of delimited-control operators in the CPS hierarchy. As a byproduct, we
also present several reduction semantics for applicative expressions with the J
operator, based on Curien's original calculus of explicit substitutions. These
reduction semantics mechanically correspond to the modernized versions of the
SECD machine and to the best of our knowledge, they provide the first syntactic
theories of applicative expressions with the J operator. |
---|---|
ISSN: | 1860-5974 1860-5974 |
DOI: | 10.2168/LMCS-4(4:12)2008 |