Loading…
Hybrid CNN-SVM Classifier Approaches to Process Semi-Structured Data in Sugarcane Yield Forecasting Production
Information communication technology (ICT) breakthroughs have boosted global social and economic progress. Most rural Indians rely on agriculture for income. The growing population requires modern agricultural practices. ICT is crucial for educating farmers on how to be environmentally friendly. It...
Saved in:
Published in: | Agronomy (Basel) 2023-04, Vol.13 (4), p.1169 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Information communication technology (ICT) breakthroughs have boosted global social and economic progress. Most rural Indians rely on agriculture for income. The growing population requires modern agricultural practices. ICT is crucial for educating farmers on how to be environmentally friendly. It helps them create more food by solving a variety of challenges. India’s sugarcane crop is popular and lucrative. Long-term crops that require water do not need specific soil. They need water; the ground should always have adequate water due to the link between cane growth and evaporation. This research focuses on forecasting soil moisture and classifying sugarcane output; sugarcane has so many applications that it must be categorized. This research examines these claims: The first phase model predicts soil moisture using two-level ensemble classifiers. Secondly, to boost performance, the proposed ensemble model integrates the Gaussian probabilistic method (GPM), the convolutional neural network (CNN), and support vector machines (SVM). The suggested approach aims to correctly anticipate future soil moisture measurements affecting crop growth and cultivation. The proposed model is 89.53% more accurate than conventional neural network classifiers. The recommended models’ outcomes will assist farmers and agricultural authorities in boosting production. |
---|---|
ISSN: | 2073-4395 2073-4395 |
DOI: | 10.3390/agronomy13041169 |